The mechanical properties of red sandstone subjected to cyclic point loading were investigated. Tests were conducted using MTS servohydraulic landmark test system, under cyclic loadings with constant amplitudes and in...The mechanical properties of red sandstone subjected to cyclic point loading were investigated. Tests were conducted using MTS servohydraulic landmark test system, under cyclic loadings with constant amplitudes and increasing multi-level amplitudes. The frequencies range from 0.1 to 5 Hz and lower limit load ratios range from 0 to 0.60. Laboratory investigations were performed to find the effect of the frequency and the lower limit load ratio on the fatigue life and hysteresis properties of sandstone. The results show that the fatigue life of sandstone decreases first and then increases with the increase of frequency and lower limit load ratio. Under the same cycle number, the spacing between hysteresis loops increases with rising frequency and decreasing lower limit load ratio. The existence of “training” and “memory” effects in red sandstone under cyclic point loading was proved.展开更多
Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring com...Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring comparison of two series-lined bridges,three local geometric parameters of steel box girder have significant influence on fatigue performance of two welded joints.They are thickness of longitudinal ribs(Tr),longitudinal spacing of transverse floor plate(Sc)and longitudinal truss(LT).Fatigue analytical models were created for parametric study of fatigue effects under wheel load.Consequently,three local parameters have exhibited insignificant influence on number of stress cycle.Compared with Tr and Sc,configuration of LT has brought about foremost effect on the equivalent stress amplitude.For equivalent stress amplitude of rib-to-deck and rib-to-rib welded joints,the influence regions of LT are respectively longitudinal strap and quadrate with the geometric length of 600 mm.Enough attention ought to be paid for local stiffen structure on fatigue performance of orthotropic steel deck in fatigue design and monitoring.展开更多
Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a b...Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.展开更多
The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting e...The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.展开更多
The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded c...The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.展开更多
The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including...The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.展开更多
With the acceleration of the rise of central China and the western development drive, industrial relocation from China's eastern region to the central and western regions is in full swing. However, does the relocatio...With the acceleration of the rise of central China and the western development drive, industrial relocation from China's eastern region to the central and western regions is in full swing. However, does the relocation demonstrate industrial clustering effect? Empirical studies based on twenty two-digit manufacturing industries in 27provinces from 2000 to 2009 demonstrate that industrial clustering effect appeared in central and western regions which had undertaken industrial relocation from eastern region; however, the studies do not show excessive administrative interference as evidenced by the significantly improved productivity of the relocated industries. Compared with non-labor- intensive manufacturing industries, labor-intensive manufacturing industries are easier to form cyclic accumulative effects. Studies also revealed that improvement in supporting infrastructure, industrial chain and higher labor quality in non-agriculture employment during urbanization are significant for central and western regions to undertake industrial relocation.展开更多
Non-linear programming analysis suggests that employment effects of minimum wage regulation are the result not only of the regulation itself but also of the external regulatory environment. At a certain level, the reg...Non-linear programming analysis suggests that employment effects of minimum wage regulation are the result not only of the regulation itself but also of the external regulatory environment. At a certain level, the regulatory environment intensifies the effect on employment of minimum wage regulation. Empirical studies based on survey data from 439 enterprises in Guangdong and Fujian show that minimum wage rises had a greater impact on the employment of rural migrant workers in 2008 than in 2007, although no significant change was observed among workers who were permanent urban residents. Further analysis shows that the greater impact on migrant workers derives mainly from the strengthened regulatory environment brought about by the Employment Contracts Law. The permanent urban workforce has not been similarly affected because their interests have been given priority under the dual employment system. This reminds us that the employment effects of the Employment Contracts Law may be realized indirectly through other regulatory measures, including strengthened minimum wage regulation.展开更多
With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid...With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of Ag NW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors.展开更多
基金Projects(51322403,51274254)supported by the National Natural Science Foundation of ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘The mechanical properties of red sandstone subjected to cyclic point loading were investigated. Tests were conducted using MTS servohydraulic landmark test system, under cyclic loadings with constant amplitudes and increasing multi-level amplitudes. The frequencies range from 0.1 to 5 Hz and lower limit load ratios range from 0 to 0.60. Laboratory investigations were performed to find the effect of the frequency and the lower limit load ratio on the fatigue life and hysteresis properties of sandstone. The results show that the fatigue life of sandstone decreases first and then increases with the increase of frequency and lower limit load ratio. Under the same cycle number, the spacing between hysteresis loops increases with rising frequency and decreasing lower limit load ratio. The existence of “training” and “memory” effects in red sandstone under cyclic point loading was proved.
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(2011318223170)supported by Key Program of Ministry of Transport,China+3 种基金Project(1105007001)supported by Program of the Priority Academic Development Program of Jiangsu Higher Education Institutions,ChinaProject(3205001205)supported by Teaching and Research Foundation for Excellent Young Teacher of Southeast University,ChinaProject(CXZZ-0162)supported by Graduate Scientific Innovation Research Foundation of Jiangsu Province,ChinaProject(YBJJ1122)supported by Scientific Research Foundation of Graduate School of Southeast University,China
文摘Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring comparison of two series-lined bridges,three local geometric parameters of steel box girder have significant influence on fatigue performance of two welded joints.They are thickness of longitudinal ribs(Tr),longitudinal spacing of transverse floor plate(Sc)and longitudinal truss(LT).Fatigue analytical models were created for parametric study of fatigue effects under wheel load.Consequently,three local parameters have exhibited insignificant influence on number of stress cycle.Compared with Tr and Sc,configuration of LT has brought about foremost effect on the equivalent stress amplitude.For equivalent stress amplitude of rib-to-deck and rib-to-rib welded joints,the influence regions of LT are respectively longitudinal strap and quadrate with the geometric length of 600 mm.Enough attention ought to be paid for local stiffen structure on fatigue performance of orthotropic steel deck in fatigue design and monitoring.
基金Funded by the National Natural Science Foundation of China (No. 60376032 and No. 90406024) and the Key Teacher Foundation of Chongqing University.
文摘Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.
基金the financial support from the National Natural Science Foundation of China(Nos.51975271,51675260,51475223)the Starting Research Fund of Nanjing Vocational University of Industry Technology,China(No.YK20-14-05)。
文摘The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.
基金The National Key Research and Development Program of China(No.2017YFC0805100),the National Natural Science Foundation of China(No.51578137)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
文摘The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.
基金Supported by the National Natural Science Foundation of China (50809019).
文摘The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.
文摘With the acceleration of the rise of central China and the western development drive, industrial relocation from China's eastern region to the central and western regions is in full swing. However, does the relocation demonstrate industrial clustering effect? Empirical studies based on twenty two-digit manufacturing industries in 27provinces from 2000 to 2009 demonstrate that industrial clustering effect appeared in central and western regions which had undertaken industrial relocation from eastern region; however, the studies do not show excessive administrative interference as evidenced by the significantly improved productivity of the relocated industries. Compared with non-labor- intensive manufacturing industries, labor-intensive manufacturing industries are easier to form cyclic accumulative effects. Studies also revealed that improvement in supporting infrastructure, industrial chain and higher labor quality in non-agriculture employment during urbanization are significant for central and western regions to undertake industrial relocation.
基金the National Natural Science Foundation sponsored project, "The Employment Effects of Labor Regulation on Rural Migrant Workers and Administrative Policies: With a Focus on Minimum Wage Rises" (劳动规制对农民工的就业影响及管理政策研究:以提高最低工资标准为例)sponsored by the General Administration of Quality Supervision, Inspection and Quarantine and the Renmin University of China, "The Impact of Foreign Technical Measures on China’s Export" (国外基础性贸易措施对我 们出口的影响)
文摘Non-linear programming analysis suggests that employment effects of minimum wage regulation are the result not only of the regulation itself but also of the external regulatory environment. At a certain level, the regulatory environment intensifies the effect on employment of minimum wage regulation. Empirical studies based on survey data from 439 enterprises in Guangdong and Fujian show that minimum wage rises had a greater impact on the employment of rural migrant workers in 2008 than in 2007, although no significant change was observed among workers who were permanent urban residents. Further analysis shows that the greater impact on migrant workers derives mainly from the strengthened regulatory environment brought about by the Employment Contracts Law. The permanent urban workforce has not been similarly affected because their interests have been given priority under the dual employment system. This reminds us that the employment effects of the Employment Contracts Law may be realized indirectly through other regulatory measures, including strengthened minimum wage regulation.
基金supported by the National Natural Science Foundation of China(51803191)the China Postdoctoral Science Foundation(2018M642782)the 111 project(D18023)
文摘With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of Ag NW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors.