The previous report (XI) gave the electrochemical-potential theory of the Bipolar Field-Effect Transistors. This report (XII) gives the drift-diffusion theory. Both treat 1-gate and 2-gate, pure-base and impure-ba...The previous report (XI) gave the electrochemical-potential theory of the Bipolar Field-Effect Transistors. This report (XII) gives the drift-diffusion theory. Both treat 1-gate and 2-gate, pure-base and impure-base, and thin and thick base. Both utilize the surface and bulk potentials as the parametric variables to couple the voltage and current equations. In the present drift-diffusion theory, the very many current terms are identified by their mobility multiplier for the components of drift current,and the diffusivity multiplier for the components of the diffusion current. Complete analytical driftdiffusion equations are presented to give the DC current-voltage characteristics of four common MOS transistor structures. The drift current consists of four terms: 1-D (One-Dimensional) bulk charge drift term, 1-D carrier space-charge drift term,l-D Ex^2 (transverse electric field) drift term,2-D drift term. The diffusion current consists of three terms: 1-D bulk charge diffusion term,l-D carrier space-charge diffusion term,and 2-D diffusion term. The 1-D Ex^2 drift term was missed by all the existing transistor theories, and contributes significantly, as much as 25 % of the total current when the base layer is nearly pure. The 2-D terms come from longitudinal gradient of the longitudinal electric field,which scales as the square of the Debye to Channel length ratio, at 25nm channel length with nearly pure base, (LD/L)^2 = 10^6 but with impurity concentration of 10^18cm^-3 , (LD/L)^2 = 10^-2 .展开更多
The potential energy surfaces are calculated for neutron-deficient At isotopes from A - 190 to 207 in an axially deformed relativistic mean-field approach, using a quadratic constraint scheme for the first time. We fi...The potential energy surfaces are calculated for neutron-deficient At isotopes from A - 190 to 207 in an axially deformed relativistic mean-field approach, using a quadratic constraint scheme for the first time. We find several minima in the potential energy surface for each nucleus, shape-coexistence, and quadratic deform are discussed.展开更多
Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic ...Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.展开更多
Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D f...Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.展开更多
文摘The previous report (XI) gave the electrochemical-potential theory of the Bipolar Field-Effect Transistors. This report (XII) gives the drift-diffusion theory. Both treat 1-gate and 2-gate, pure-base and impure-base, and thin and thick base. Both utilize the surface and bulk potentials as the parametric variables to couple the voltage and current equations. In the present drift-diffusion theory, the very many current terms are identified by their mobility multiplier for the components of drift current,and the diffusivity multiplier for the components of the diffusion current. Complete analytical driftdiffusion equations are presented to give the DC current-voltage characteristics of four common MOS transistor structures. The drift current consists of four terms: 1-D (One-Dimensional) bulk charge drift term, 1-D carrier space-charge drift term,l-D Ex^2 (transverse electric field) drift term,2-D drift term. The diffusion current consists of three terms: 1-D bulk charge diffusion term,l-D carrier space-charge diffusion term,and 2-D diffusion term. The 1-D Ex^2 drift term was missed by all the existing transistor theories, and contributes significantly, as much as 25 % of the total current when the base layer is nearly pure. The 2-D terms come from longitudinal gradient of the longitudinal electric field,which scales as the square of the Debye to Channel length ratio, at 25nm channel length with nearly pure base, (LD/L)^2 = 10^6 but with impurity concentration of 10^18cm^-3 , (LD/L)^2 = 10^-2 .
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475116, 10535010, and 10235030, and Asia-Europe Link in Nuclear Physics and Astrophysics under Grant No. CN/ASIA-LINK/008 (094-791) and by Major State Basic Research Development Program of China under Grant No. 2007CB815000
文摘The potential energy surfaces are calculated for neutron-deficient At isotopes from A - 190 to 207 in an axially deformed relativistic mean-field approach, using a quadratic constraint scheme for the first time. We find several minima in the potential energy surface for each nucleus, shape-coexistence, and quadratic deform are discussed.
基金the National Natural Science Foundation of China(Grant Nos.12172321 and 11472239)the Hebei Provincial Natural Science Foundation of China(Grant No.A2020203007).
文摘Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.
基金supported by the Fundamental Research Funds For the Central Universities (Grant No. HEUCFR1013)
文摘Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.