The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global...The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global precipitation change and the appropriate relevant strategy for the sustainable development of the China dry territory, the authors have investigated the response of water balance to global precipitation change by creating an artificial control of four levels of water supply treating 3 dominant plants in Mauwusu sandland. The results showed that the seasonal changes of water storage and moisture of different sandland layer depths were affected by different water supply treatments and different plants. The water storage of the three plant growing sandlands and the moisture of different sandland layer depths increased as water supply was increased. The moisture of different water supply treatments and plants increased with the increase of sandland layer depth. The water storage and moisture of the same layer depth of Hedysarum mongolicum Turcz. growing sandland were larger than that of Salix psammophila C. Wang et Ch. Y. Yang growing sandland, which were in turn higher than that of Artemisia ordosica Krasch. growing sandland in the same water supply treatment. Water supply significantly affected the seasonal changes of evaporation and transpiration of the three plant growing sandlands. With the increased levels of water supply, viz. 157.5 mm, 315.0 mm, 472.5 mm and 630.0 mm, the total evaporation was 123.66 mm, 258.68 mm, 376.30 mm, 458.57 mm, respectively, and the total transpiration of A. ordosica was 50.80 mm, 68.93 mm, 108.39 mm, 163.36 mm, respectively, and that of S. psammophila , 47.37 mm, 68.17 mm, 93.65 mm, 135.97 mm, respectively, and that of H. mongolicum 46.73 mm, 67.37 mm, 86.07 mm, 109.64 mm, respectively. Evaporation was significantly higher than transpiration in the experiment.展开更多
Extreme precipitation events cause severe environmental and societal damage worldwide.Southwest China(SWC)is sensitive to such effects because of its overpopulation,underdevelopment,and fragile ecosystems.Using daily ...Extreme precipitation events cause severe environmental and societal damage worldwide.Southwest China(SWC)is sensitive to such effects because of its overpopulation,underdevelopment,and fragile ecosystems.Using daily observations from 108 rain-gauge stations,the authors investigated the frequency of extreme precipitation events and their contribution to total precipitation in SWC since the late 1970 s.Results indicate that total precipitation is decreasing insignificantly,but rainfall-events frequency is decreasing significantly,whereas the region is experiencing more frequent and intense extreme precipitation events.Note that although fewer stations are statistically significant,about 60%of the rain-gauge stations show an increasing trend in the frequency and intensity of extreme precipitation.Furthermore,there is an increasing trend in the contribution of total extreme precipitation to total precipitation,with extreme precipitation becoming dominant in the increasingly arid SWC region.The results carry important implications for policymakers,who should place greater emphasis on extreme precipitation and associated floods and landslides when drafting water-resource management policies.展开更多
[Objective] This study aimed to explore the historical evolution rules of precipitation variation in Zhongwei City by analyzing the annual precipitation data during 1961 to 2010 from Zhongwei Municipal Meteorological ...[Objective] This study aimed to explore the historical evolution rules of precipitation variation in Zhongwei City by analyzing the annual precipitation data during 1961 to 2010 from Zhongwei Municipal Meteorological Bureau of Ningxia,to provide the basis for middle and long term precipitation trend forecast.[Method] Five-point moving average method,trend coefficient analysis method,Mann-Kendall trend test method and variance analysis method were used to analyze the annual precipitation data during 1961 to 2010 in Zhongwei City.[Result] Annual precipitation series in Zhongwei City of Ningxia during 1961 to 2010 showed an insignificantly decreasing trend;among the seasonal precipitation series,spring precipitation had shown a consistent variation with the annual precipitation,summer precipitation had shown a slightly decreasing trend before 1978 and a significantly decreasing trend after 1978,autumn precipitation showed a decreasing trend before 1978 and an insignificantly increasing trend after 1978,winter precipitation showed a significantly increasing trend before 1978 and an insignificantly increasing trend after 1978.Both the annual and seasonal precipitation series had significant periodic variation rules.[Conclusion] Results of this study was conducive to understand the overall trend of annual precipitation series variation in Zhongwei City of Ningxia and its seasonal distribution characteristics and variation rules and provided a reliable basis for the hydrological forecasting in this region and reference for the middle and long term estimation and forecast of the trend of precipitation variation.展开更多
Based on daily rainfall data from 26 station records,spatial and temporal variations in annual and seasonal precipitation of different rainfall intensities from 1961 to 2018 in Ningxia,China are investigated using the...Based on daily rainfall data from 26 station records,spatial and temporal variations in annual and seasonal precipitation of different rainfall intensities from 1961 to 2018 in Ningxia,China are investigated using the innovative trend analysis(ITA)method.The results show that annual precipitation increases on the northern plain but decreases in the southern mountainous area.The increase in regional annual precipitation is mainly due to an increase in weak precipitation,while the decrease in regional annual rainfall is a result of a reduction in heavy precipitation.Lowintensity precipitation shows an upward trend,while high-intensity precipitation shows a downward trend.The variation trend of extreme precipitation is more obvious.The contributions of different types of extreme precipitation vary by season.During spring,the increase in regional rainfall is mainly caused by the increase in heavy precipitation,while the decrease in regional precipitation is mainly caused by the decrease in weak precipitation.During summer and autumn,the increase in regional precipitation is caused by the increase in light precipitation,while the reduction in regional rainfall is caused by the decrease in heavy precipitation.This study provides support for water resources planning and addressing droughts and floods.展开更多
In this study, the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China. Dynamical downscaling is performed using a 60-km horizontal resolution Regional I...In this study, the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China. Dynamical downscaling is performed using a 60-km horizontal resolution Regional Integrated Environmental Model System (RIEMS) forced by the NCEP-Department of Energy (DOE) reanalysis II (NCEP-2). The results show that this regional climate model (RCM) can not only produce dynamically consis- tent fine scale fields of atmosphere and land surface in the regional domain, but it also has the ability to minimize artificial climate trends existing in the global reanalysis to a certain extent. As compared to the observed 2-meter temperature anomaly averaged across China, our model can simulate the observed inter-annual variation and variability as well as reduce artificial climate trends in the reanalysis by approximately 0.10℃ decade-1 from 1980 to 2007. The RIEMS can effectively reduce artificial trends in global reanalysis for areas in western China, especially for regions with high altitude mountains and deserts, as well as introduce some new spurious changes in other local regions. The model simulations overesti- mated observed winter trends for most areas in eastern China with the exception of the Tibetan Plateau, and it greatly overestimated observed summer trends in the Si- chuan Basin located in southwest China. This implies that the dynamical downscaling of RCM for long-term trends has certain seasonal and regional dependencies due to imperfect physical processes and parameterizations.展开更多
Through linear regression analysis to the trend of annual,seasonal and monthly precipitation of 72 meteorological stations in Hubei Province from 1961 to 1995,it is revealed that: 1) annual precipitation was increasin...Through linear regression analysis to the trend of annual,seasonal and monthly precipitation of 72 meteorological stations in Hubei Province from 1961 to 1995,it is revealed that: 1) annual precipitation was increasing by 61.0mm/10a in the eastern part of Hubei (112°E as a dividing line) and decreasing by 34.9mm/10a in the western part; 2) precipitation in winter and summer (January,February,March,June and July) was increasing in almost whole province which usually with non-uniformity of precipitation distribution from the south to the north. The precipitation in spring,autumn and winter (April,September,November and December) was decreasing in most of the areas which usually with non-uniformity of precipitation distribution from the east to the west. March and December were transition periods between two spatial distribution patterns mentioned above; 3) the eastern part of Hubei has beome one of precipitation increasing centers in China. The results was consistent with the trend that more frequent flood and drought events happened in Hubei Province which are more different in spatial and temporal scales.展开更多
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major find...This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, average temperature in summer, and average temperature in spring. The average annual temperature and annual precipi- tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita- tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob- served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.展开更多
Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions...Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions of the heaviest rainfall in China, by using two datasets provided by the Chinese Meteorological Data Center. The results indicate that summer (from June to September) precipitation over the western Sichuan basin shows a significantly decreasing trend. The summer precipitation over this region has decreased by about 20% since the 1950s, with a rate of decrease of about 40 mm per decade.展开更多
Based on the theory of Canonical Correlation Analysis (CCA), the correlation between 500 hPa geopotential height (H) fields over the Northern Hemisphere (NH) and a 15-region rainfall (R) field of China in May is studi...Based on the theory of Canonical Correlation Analysis (CCA), the correlation between 500 hPa geopotential height (H) fields over the Northern Hemisphere (NH) and a 15-region rainfall (R) field of China in May is studied. The results indicate that: (1) there is a strong relationship between the H fields in January / May and the R field in China, (2) the variation of the general circulation over the whole NH (especially the 500 hPa H field over Europe and Asia) can affect the R in China, (3) in January and February the atmospheric general circulation can affect the R mainly by means of planetary waves, while in April and May the main control mechanism can be due to some teleconnections, and (4) the characteristic vectors for R in May and H from January to May have wave train structure, alternating sign from south to north.展开更多
A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 Jul...A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 July was used as a representative case to reveal the dynamical mechanism for the QBWO of the YRV rainfall from the potential vorticity(PV)perspective and based on MERRA-2 reanalysis data.The quasi-biweekly YRV rainfall was found to depend closely on the QBWO of the upper-tropospheric South Asian high(SAH),with the SAH configuration modified by the southward-intruding midlatitude high PV stream along with southwestward-advected high PV,altering the divergent condition over the YRV.Quantitative diagnoses for the anomalous vertical motion demonstrated that,in the wet phase of the QBWO cycle,the upper-tropospheric southward-intruding high PV stream acted as a positive PV advection,while negative PV advection was generated due to the lower-tropospheric southerlies,thereby forming a positive vertical gradient of horizontal PV advection to induce evident isentropic-displacement ascending motion.On the other hand,the southward-intruding high PV stream extended downward to the middle troposphere,causing the isentropic surfaces to become more sloping,thus producing a strong isentropic-gliding ascending component.Subsequently,the stronger diabatic heating-related ascending motion was induced to generate positive rainfall anomalies over the YRV.The opposite situation arose in the dry phase,with weak descending motion in magnitude.展开更多
Characteristics of the relationship between precipitation variation trends (PVT) and altitude were analyzed using monthly mean precipitation data from 526 observation stations in China from 1961 to 2008.With respect t...Characteristics of the relationship between precipitation variation trends (PVT) and altitude were analyzed using monthly mean precipitation data from 526 observation stations in China from 1961 to 2008.With respect to elevation,China was divided into three subregions,below 200 m,200-1500 m,and above 1500 m.The results showed that the correlations between annual PVT and altitude are different among the three regions.In the region below 200 m in elevation,the best relationship has a correlation coefficient of-0.19 (0.49),passing the 90% (99.9%) significance level south (north) of 35 N.However,the correlation coefficient is close to zero,and the latitude strongly governs the spatial distribution of the amplitude of annual PVT in the 200-1500-m elevation region.In most of the Tibetan Plateau,where the elevation is greater than 1500 m,there is a weak negative correlation.The Mann-Kendall method was used to test the trend of regional mean annual precipitation,which indicated that the annual mean precipitation had no obvious trend of change in China due to the reverse significant variation trends in different areas of the country.展开更多
The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of chang...The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen's slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.展开更多
Understanding the interactions(synergies and trade-offs)among the Sustainable Development Goals(SDGs)is crucial for enhancing policy coherence between different sectors.However,spatial differences in the SDG interacti...Understanding the interactions(synergies and trade-offs)among the Sustainable Development Goals(SDGs)is crucial for enhancing policy coherence between different sectors.However,spatial differences in the SDG interactions and their temporal variations at the sub-national scale are still critical gaps that need to be urgently filled.Here,we assess the spatial and temporal variation of the SDG interactions in China based on the systematic classification framework of SDGs.The framework groups the seventeen SDGs into three categories,namely“Essential Needs”“Objectives”,and“Governance”.Spatially,we found that the SDGs in“Essential Needs”&“Objectives”and“Essential Needs”&“Governance”generally show trade-offs in the eastern provinces of China.Synergies among all three SDG categories are observed in some central and western China provinces,which implies that these regions conform to sustainable development patterns.In addition,temporally,the synergies of the three SDG categories have shown a weakening trend in the last decade,mainly due to the regional differences in the progress of SDG7(Affordable and Clean Energy).Overall,our results identify the necessity for provinces to enhance the synergies between SDG12(Responsible Production and Consumption)and other SDGs to tackle the trade-offs between the“Essential Needs”and“Objectives”.Meanwhile,promoting the progress of SDG7 will also contribute to balanced development across provinces.展开更多
Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition...Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition across different types of grassland worldwide,few studies have specifically focused on the effects of precipitation changes on high-altitude alpine steppe at community and plant species levels in the Tibetan Plateau.Methods We investigated the effects of growing-season precipitation changes(reduced precipitation by 50%,ambient precipitation,enhanced precipitation by 50%)for 6 years on plant community composition in an alpine steppe of the Tibetan Plateau by linking above-to belowground traits of dominant species.Important Findings We found that reduced precipitation shifted community composition from dominance by bunchgrass(primarily Stipa purpurea)to dominance by rhizomatous grass(primarily Leymus secalinus).Roots and leaf traits of L.secalinus and S.purpurea differed in their responses to reduced precipitation.Reduced precipitation enhanced root vertical length and carbon(C)allocation to deep soil layers,and decreased the leaf width in L.secalinus,but it did not change the traits in S.purpurea.Moreover,reduced precipitation significantly enhanced rhizome biomass,length,diameter and adventitious root at the rhizome nodes in L.secalinus.These changes in traits may render rhizomatous grass greater competitive during drought stress.Therefore,our findings highlight important roles of above-and belowground traits of dominant species in plant community composition of alpine steppe under precipitation change.展开更多
文摘The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global precipitation change and the appropriate relevant strategy for the sustainable development of the China dry territory, the authors have investigated the response of water balance to global precipitation change by creating an artificial control of four levels of water supply treating 3 dominant plants in Mauwusu sandland. The results showed that the seasonal changes of water storage and moisture of different sandland layer depths were affected by different water supply treatments and different plants. The water storage of the three plant growing sandlands and the moisture of different sandland layer depths increased as water supply was increased. The moisture of different water supply treatments and plants increased with the increase of sandland layer depth. The water storage and moisture of the same layer depth of Hedysarum mongolicum Turcz. growing sandland were larger than that of Salix psammophila C. Wang et Ch. Y. Yang growing sandland, which were in turn higher than that of Artemisia ordosica Krasch. growing sandland in the same water supply treatment. Water supply significantly affected the seasonal changes of evaporation and transpiration of the three plant growing sandlands. With the increased levels of water supply, viz. 157.5 mm, 315.0 mm, 472.5 mm and 630.0 mm, the total evaporation was 123.66 mm, 258.68 mm, 376.30 mm, 458.57 mm, respectively, and the total transpiration of A. ordosica was 50.80 mm, 68.93 mm, 108.39 mm, 163.36 mm, respectively, and that of S. psammophila , 47.37 mm, 68.17 mm, 93.65 mm, 135.97 mm, respectively, and that of H. mongolicum 46.73 mm, 67.37 mm, 86.07 mm, 109.64 mm, respectively. Evaporation was significantly higher than transpiration in the experiment.
基金jointly supported by the National Natural Science Foundation of China[grant numbers U20A2097,42175042,41905037,41805054]the China Scholarship Council[grant numbers 201908510031 and 201908510032]the Plateau and Basin Rainstorm,Drought and Flood Key Laboratory of Sichuan Province[grant number SCQXKJZD202102-6]。
文摘Extreme precipitation events cause severe environmental and societal damage worldwide.Southwest China(SWC)is sensitive to such effects because of its overpopulation,underdevelopment,and fragile ecosystems.Using daily observations from 108 rain-gauge stations,the authors investigated the frequency of extreme precipitation events and their contribution to total precipitation in SWC since the late 1970 s.Results indicate that total precipitation is decreasing insignificantly,but rainfall-events frequency is decreasing significantly,whereas the region is experiencing more frequent and intense extreme precipitation events.Note that although fewer stations are statistically significant,about 60%of the rain-gauge stations show an increasing trend in the frequency and intensity of extreme precipitation.Furthermore,there is an increasing trend in the contribution of total extreme precipitation to total precipitation,with extreme precipitation becoming dominant in the increasingly arid SWC region.The results carry important implications for policymakers,who should place greater emphasis on extreme precipitation and associated floods and landslides when drafting water-resource management policies.
基金Supported by Youth Fund Project of Ningxia Meteorological BureauProject of Ningxia Meteorological Bureau " Study on Desert Facilities Agro-meteorological Support Technology in Zhongwei City" Scientific and Technological Project of Ningxia Hui Autonomous Region Science and Technology Agency " Study on Evolution Rule,Prediction and Forecast of Diseases and Pests of Jujube and Its Comprehensive Prevention and Control Technology" ~~
文摘[Objective] This study aimed to explore the historical evolution rules of precipitation variation in Zhongwei City by analyzing the annual precipitation data during 1961 to 2010 from Zhongwei Municipal Meteorological Bureau of Ningxia,to provide the basis for middle and long term precipitation trend forecast.[Method] Five-point moving average method,trend coefficient analysis method,Mann-Kendall trend test method and variance analysis method were used to analyze the annual precipitation data during 1961 to 2010 in Zhongwei City.[Result] Annual precipitation series in Zhongwei City of Ningxia during 1961 to 2010 showed an insignificantly decreasing trend;among the seasonal precipitation series,spring precipitation had shown a consistent variation with the annual precipitation,summer precipitation had shown a slightly decreasing trend before 1978 and a significantly decreasing trend after 1978,autumn precipitation showed a decreasing trend before 1978 and an insignificantly increasing trend after 1978,winter precipitation showed a significantly increasing trend before 1978 and an insignificantly increasing trend after 1978.Both the annual and seasonal precipitation series had significant periodic variation rules.[Conclusion] Results of this study was conducive to understand the overall trend of annual precipitation series variation in Zhongwei City of Ningxia and its seasonal distribution characteristics and variation rules and provided a reliable basis for the hydrological forecasting in this region and reference for the middle and long term estimation and forecast of the trend of precipitation variation.
基金This study was supported by the National Key Research and Development Plan of China[Grant No.2016YFE0201900-02]the National Natural Science Foundation of China[Grant Nos.41575037 and 41205099]+1 种基金the National Basic Research Program of China[973 Program,Grant No.2014CB441403]Guizhou Province Scientific Research Joint Project[Grant No.G[2013]4001].
文摘Based on daily rainfall data from 26 station records,spatial and temporal variations in annual and seasonal precipitation of different rainfall intensities from 1961 to 2018 in Ningxia,China are investigated using the innovative trend analysis(ITA)method.The results show that annual precipitation increases on the northern plain but decreases in the southern mountainous area.The increase in regional annual precipitation is mainly due to an increase in weak precipitation,while the decrease in regional annual rainfall is a result of a reduction in heavy precipitation.Lowintensity precipitation shows an upward trend,while high-intensity precipitation shows a downward trend.The variation trend of extreme precipitation is more obvious.The contributions of different types of extreme precipitation vary by season.During spring,the increase in regional rainfall is mainly caused by the increase in heavy precipitation,while the decrease in regional precipitation is mainly caused by the decrease in weak precipitation.During summer and autumn,the increase in regional precipitation is caused by the increase in light precipitation,while the reduction in regional rainfall is caused by the decrease in heavy precipitation.This study provides support for water resources planning and addressing droughts and floods.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KGCX2-YW-356)the R & D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201006023)the National Natural Science Foundation of China (Grant No.40805032)
文摘In this study, the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China. Dynamical downscaling is performed using a 60-km horizontal resolution Regional Integrated Environmental Model System (RIEMS) forced by the NCEP-Department of Energy (DOE) reanalysis II (NCEP-2). The results show that this regional climate model (RCM) can not only produce dynamically consis- tent fine scale fields of atmosphere and land surface in the regional domain, but it also has the ability to minimize artificial climate trends existing in the global reanalysis to a certain extent. As compared to the observed 2-meter temperature anomaly averaged across China, our model can simulate the observed inter-annual variation and variability as well as reduce artificial climate trends in the reanalysis by approximately 0.10℃ decade-1 from 1980 to 2007. The RIEMS can effectively reduce artificial trends in global reanalysis for areas in western China, especially for regions with high altitude mountains and deserts, as well as introduce some new spurious changes in other local regions. The model simulations overesti- mated observed winter trends for most areas in eastern China with the exception of the Tibetan Plateau, and it greatly overestimated observed summer trends in the Si- chuan Basin located in southwest China. This implies that the dynamical downscaling of RCM for long-term trends has certain seasonal and regional dependencies due to imperfect physical processes and parameterizations.
文摘Through linear regression analysis to the trend of annual,seasonal and monthly precipitation of 72 meteorological stations in Hubei Province from 1961 to 1995,it is revealed that: 1) annual precipitation was increasing by 61.0mm/10a in the eastern part of Hubei (112°E as a dividing line) and decreasing by 34.9mm/10a in the western part; 2) precipitation in winter and summer (January,February,March,June and July) was increasing in almost whole province which usually with non-uniformity of precipitation distribution from the south to the north. The precipitation in spring,autumn and winter (April,September,November and December) was decreasing in most of the areas which usually with non-uniformity of precipitation distribution from the east to the west. March and December were transition periods between two spatial distribution patterns mentioned above; 3) the eastern part of Hubei has beome one of precipitation increasing centers in China. The results was consistent with the trend that more frequent flood and drought events happened in Hubei Province which are more different in spatial and temporal scales.
基金Under the auspices of Second-stage Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-XB2-03)the major direction of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW- 127)Shanghai Academic Discipline Project (Human Geography) (No. B410)
文摘This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, average temperature in summer, and average temperature in spring. The average annual temperature and annual precipi- tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita- tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob- served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.
基金supported by the National Basic Research Program of China(Grant No.2009CB421400)the National Natural Science Foundation of China(Grant No.40725016)
文摘Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions of the heaviest rainfall in China, by using two datasets provided by the Chinese Meteorological Data Center. The results indicate that summer (from June to September) precipitation over the western Sichuan basin shows a significantly decreasing trend. The summer precipitation over this region has decreased by about 20% since the 1950s, with a rate of decrease of about 40 mm per decade.
基金Project "973" (G1998040905) a project of the Chinese Academy of Sciences (KZCX2-203) Natural Science Foundation of China (40065001)
文摘Based on the theory of Canonical Correlation Analysis (CCA), the correlation between 500 hPa geopotential height (H) fields over the Northern Hemisphere (NH) and a 15-region rainfall (R) field of China in May is studied. The results indicate that: (1) there is a strong relationship between the H fields in January / May and the R field in China, (2) the variation of the general circulation over the whole NH (especially the 500 hPa H field over Europe and Asia) can affect the R in China, (3) in January and February the atmospheric general circulation can affect the R mainly by means of planetary waves, while in April and May the main control mechanism can be due to some teleconnections, and (4) the characteristic vectors for R in May and H from January to May have wave train structure, alternating sign from south to north.
基金jointly supported by the Strategic Priority Re-search Program of the Chinese Academy of Sciences[grant number XDB40000000]the National Key Research and Development Program of China[grant number 2018YFC1506004]the National Natural Science Foundation of China[grant numbers 41730963 and 41876020].
文摘A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 July was used as a representative case to reveal the dynamical mechanism for the QBWO of the YRV rainfall from the potential vorticity(PV)perspective and based on MERRA-2 reanalysis data.The quasi-biweekly YRV rainfall was found to depend closely on the QBWO of the upper-tropospheric South Asian high(SAH),with the SAH configuration modified by the southward-intruding midlatitude high PV stream along with southwestward-advected high PV,altering the divergent condition over the YRV.Quantitative diagnoses for the anomalous vertical motion demonstrated that,in the wet phase of the QBWO cycle,the upper-tropospheric southward-intruding high PV stream acted as a positive PV advection,while negative PV advection was generated due to the lower-tropospheric southerlies,thereby forming a positive vertical gradient of horizontal PV advection to induce evident isentropic-displacement ascending motion.On the other hand,the southward-intruding high PV stream extended downward to the middle troposphere,causing the isentropic surfaces to become more sloping,thus producing a strong isentropic-gliding ascending component.Subsequently,the stronger diabatic heating-related ascending motion was induced to generate positive rainfall anomalies over the YRV.The opposite situation arose in the dry phase,with weak descending motion in magnitude.
基金supported by of the National Natural Science Foundation of China (Key Program,Grant No.40830956and Grant Nos. 40775055 and 40828004)
文摘Characteristics of the relationship between precipitation variation trends (PVT) and altitude were analyzed using monthly mean precipitation data from 526 observation stations in China from 1961 to 2008.With respect to elevation,China was divided into three subregions,below 200 m,200-1500 m,and above 1500 m.The results showed that the correlations between annual PVT and altitude are different among the three regions.In the region below 200 m in elevation,the best relationship has a correlation coefficient of-0.19 (0.49),passing the 90% (99.9%) significance level south (north) of 35 N.However,the correlation coefficient is close to zero,and the latitude strongly governs the spatial distribution of the amplitude of annual PVT in the 200-1500-m elevation region.In most of the Tibetan Plateau,where the elevation is greater than 1500 m,there is a weak negative correlation.The Mann-Kendall method was used to test the trend of regional mean annual precipitation,which indicated that the annual mean precipitation had no obvious trend of change in China due to the reverse significant variation trends in different areas of the country.
基金National Basic Research Program of China (973 Program), No.2012CB955304National Natural Science Foundation of China, No.41071063
文摘The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen's slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.
基金supported by the National Natural Science Foundation of China(41991230)the National Key Research and Development Program of China(2017YFA0604701)+1 种基金Prajal Pradhan acknowledges funding from the German Federal Ministry of Education and Research for the BIOCLIMAPATHS project(01LS1906A)under the Axis-ERANET callreviewed by Ministry of Natural Resources of the People’s Republic of China(GS(2021)8701)。
文摘Understanding the interactions(synergies and trade-offs)among the Sustainable Development Goals(SDGs)is crucial for enhancing policy coherence between different sectors.However,spatial differences in the SDG interactions and their temporal variations at the sub-national scale are still critical gaps that need to be urgently filled.Here,we assess the spatial and temporal variation of the SDG interactions in China based on the systematic classification framework of SDGs.The framework groups the seventeen SDGs into three categories,namely“Essential Needs”“Objectives”,and“Governance”.Spatially,we found that the SDGs in“Essential Needs”&“Objectives”and“Essential Needs”&“Governance”generally show trade-offs in the eastern provinces of China.Synergies among all three SDG categories are observed in some central and western China provinces,which implies that these regions conform to sustainable development patterns.In addition,temporally,the synergies of the three SDG categories have shown a weakening trend in the last decade,mainly due to the regional differences in the progress of SDG7(Affordable and Clean Energy).Overall,our results identify the necessity for provinces to enhance the synergies between SDG12(Responsible Production and Consumption)and other SDGs to tackle the trade-offs between the“Essential Needs”and“Objectives”.Meanwhile,promoting the progress of SDG7 will also contribute to balanced development across provinces.
基金This study is supported by National Natural Science Foundati on of China(32060286,31660160)Youth Talent Program of Northwestern Normal University(2019YJ-1,NWNU-LKQN2019-10)Natural Science Foundation of Qinghai Province(2019-ZJ-910).
文摘Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition across different types of grassland worldwide,few studies have specifically focused on the effects of precipitation changes on high-altitude alpine steppe at community and plant species levels in the Tibetan Plateau.Methods We investigated the effects of growing-season precipitation changes(reduced precipitation by 50%,ambient precipitation,enhanced precipitation by 50%)for 6 years on plant community composition in an alpine steppe of the Tibetan Plateau by linking above-to belowground traits of dominant species.Important Findings We found that reduced precipitation shifted community composition from dominance by bunchgrass(primarily Stipa purpurea)to dominance by rhizomatous grass(primarily Leymus secalinus).Roots and leaf traits of L.secalinus and S.purpurea differed in their responses to reduced precipitation.Reduced precipitation enhanced root vertical length and carbon(C)allocation to deep soil layers,and decreased the leaf width in L.secalinus,but it did not change the traits in S.purpurea.Moreover,reduced precipitation significantly enhanced rhizome biomass,length,diameter and adventitious root at the rhizome nodes in L.secalinus.These changes in traits may render rhizomatous grass greater competitive during drought stress.Therefore,our findings highlight important roles of above-and belowground traits of dominant species in plant community composition of alpine steppe under precipitation change.