本文利用不动点定理和算子半群理论讨论了Banach空间α∈( 0,1 ]阶Conformable型分数阶发展包含{ Tαx(t)∈Ax(t)+B(t,x(t))u(t)+F(t,x(t)),t∈J:=( 0,b ],x(0)=x0,mild解的存在性以及解集的紧性。This paper utilizes the fixed point ...本文利用不动点定理和算子半群理论讨论了Banach空间α∈( 0,1 ]阶Conformable型分数阶发展包含{ Tαx(t)∈Ax(t)+B(t,x(t))u(t)+F(t,x(t)),t∈J:=( 0,b ],x(0)=x0,mild解的存在性以及解集的紧性。This paper utilizes the fixed point theorem and operator semigroup theory to discuss the existence and compactness of the set of mild solutions for the α∈( 0,1 ]-order conformable fractional order evolution inclusion { Tαx(t)∈Ax(t)+B(t,x(t))u(t)+F(t,x(t)),t∈J=[ 0,b ],x(0)=x0..展开更多
文摘本文利用不动点定理和算子半群理论讨论了Banach空间α∈( 0,1 ]阶Conformable型分数阶发展包含{ Tαx(t)∈Ax(t)+B(t,x(t))u(t)+F(t,x(t)),t∈J:=( 0,b ],x(0)=x0,mild解的存在性以及解集的紧性。This paper utilizes the fixed point theorem and operator semigroup theory to discuss the existence and compactness of the set of mild solutions for the α∈( 0,1 ]-order conformable fractional order evolution inclusion { Tαx(t)∈Ax(t)+B(t,x(t))u(t)+F(t,x(t)),t∈J=[ 0,b ],x(0)=x0..