期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
长短期记忆神经网络在厦门风暴潮预报中的应用 被引量:4
1
作者 苗庆生 徐珊珊 +3 位作者 杨锦坤 杨杨 刘玉龙 余璇 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第9期10-19,共10页
利用长短期记忆神经网络(LSTM)模型强大的长短期记忆能力,建立厦门风暴潮增水预报的人工神经网络模型。利用信息流理论确定了影响增水的10种因子,分别利用不同因子组合测试了不同模型的表现,确定了表现最佳的因子组合。基于此因子组合,... 利用长短期记忆神经网络(LSTM)模型强大的长短期记忆能力,建立厦门风暴潮增水预报的人工神经网络模型。利用信息流理论确定了影响增水的10种因子,分别利用不同因子组合测试了不同模型的表现,确定了表现最佳的因子组合。基于此因子组合,对比了LSTM模型和常用的BP神经网络模型、SVM模型和线性回归模型,确定了LSTM模型在风暴潮增水上的优势。基于LSTM最佳预测模型预测了1、2、3及6 h风暴潮增水值,并基于三种不同台风路径分析了模型的平均绝对误差、相关系数、有效系数和极值偏差指标。结果显示,LSTM模型在预报风暴潮短期增水有很高精度,可为防灾减灾提供辅助和参考。 展开更多
关键词 风暴潮 信息 长短期记忆神经网络(lstm) 神经网络 预报
下载PDF
基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法 被引量:52
2
作者 赵雅雪 王旭 +2 位作者 蒋传文 张津珲 周子青 《中国电机工程学报》 EI CSCD 北大核心 2021年第1期135-146,共12页
为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方... 为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力。在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据。 展开更多
关键词 最大信息系数 相关性分析 长短期记忆(lstm)神经网络 改进多层级门控lstm 短期电价预测
下载PDF
具有选择性局部注意力和前序信息解码器的代码生成模型 被引量:3
3
作者 梁婉莹 朱佳 +4 位作者 吴志杰 颜志文 汤庸 黄晋 余伟浩 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期45-52,共8页
提出一种基于语法的代码生成模型,该模型具有选择性局部注意力和包含前序信息的长短期记忆(LSTM)神经网络解码器,通过更改上下文向量的计算范围,并在解码过程中融合更多的前序信息,增强单词之间的相关性。在Hearthstone和Django两个数... 提出一种基于语法的代码生成模型,该模型具有选择性局部注意力和包含前序信息的长短期记忆(LSTM)神经网络解码器,通过更改上下文向量的计算范围,并在解码过程中融合更多的前序信息,增强单词之间的相关性。在Hearthstone和Django两个数据集上进行的代码生成实验证实了所提模型的有效性,与最新的模型相比,所提模型不仅表现出更出色的准确率和双语评估学习成绩,还可以使计算工作量最小化。 展开更多
关键词 代码生成 抽象语法树 包含前序信息的长短期记忆神经网络(lstm) 选择性局部注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部