运用最大信息熵方法对已知测量量的最佳估计值及取值区间条件下的分布问题进行研究,重点研究了取值区间不对称条件下分布的确定方法,给出了用Matlab模拟求解Lagrange乘子的算法.已知有限的先验信息确定分布,是基于蒙特卡罗方法(Monte Ca...运用最大信息熵方法对已知测量量的最佳估计值及取值区间条件下的分布问题进行研究,重点研究了取值区间不对称条件下分布的确定方法,给出了用Matlab模拟求解Lagrange乘子的算法.已知有限的先验信息确定分布,是基于蒙特卡罗方法(Monte Carlo Method,MCM)评定测量不确定度的前提条件,同时也是<测量不确定度表示指南>(GUM)评定B类不确定度的基础条件,研究的方法能够较好地解决上述条件下分布确定和B类不确定度评定问题.展开更多
In this paper, we first introduce the concept of the inclusive regular separation in L-fuzzy topological spaces. Then we compare the inclusive regular separation with pointed regular separation and regular separation,...In this paper, we first introduce the concept of the inclusive regular separation in L-fuzzy topological spaces. Then we compare the inclusive regular separation with pointed regular separation and regular separation, and discuss the implicative and non-implicative relations among the above three separations. Finally, we illustrate that the inclusive regular separation is harmonic with the inclusive normal separation and inclusive completely regular separation.展开更多
文摘运用最大信息熵方法对已知测量量的最佳估计值及取值区间条件下的分布问题进行研究,重点研究了取值区间不对称条件下分布的确定方法,给出了用Matlab模拟求解Lagrange乘子的算法.已知有限的先验信息确定分布,是基于蒙特卡罗方法(Monte Carlo Method,MCM)评定测量不确定度的前提条件,同时也是<测量不确定度表示指南>(GUM)评定B类不确定度的基础条件,研究的方法能够较好地解决上述条件下分布确定和B类不确定度评定问题.
基金the National Natural Science Foundation of China (10471083)Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE
文摘In this paper, we first introduce the concept of the inclusive regular separation in L-fuzzy topological spaces. Then we compare the inclusive regular separation with pointed regular separation and regular separation, and discuss the implicative and non-implicative relations among the above three separations. Finally, we illustrate that the inclusive regular separation is harmonic with the inclusive normal separation and inclusive completely regular separation.