The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can man...The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.展开更多
The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that t...The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulati...This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results.展开更多
This paper is concerned with the optimal and suboptimal deconvolution problems for discrete-time systems with random delayed observations. When the random delay is known online, i.e., time stamped, the random delayed ...This paper is concerned with the optimal and suboptimal deconvolution problems for discrete-time systems with random delayed observations. When the random delay is known online, i.e., time stamped, the random delayed system is reconstructed as an equivalent delay-free one by using measurement reorganization technique, and then an optimal input white noise estimator is presented based on the stochastic Kahnan filtering theory. However, tb_e optimal white-noise estimator is timevarying, stochastic, and doesn't converge to a steady state in general. Then an alternative suboptimal input white-noise estimator with deterministic gains is developed under a new criteria. The estimator gain and its respective error covariance-matrix information are derived based on a new suboptimal state estimator. It can be shown that the suboptimal input white-noise estimator converges to a steady-state one under appropriate assumptions.展开更多
文摘The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.
基金Project (61304046) supported by the National Natural Science Funds for Young Scholar of ChinaProject (F201242) supported by Natural Science Foundation of Heilongjiang Province,China
文摘The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
基金National Key Research and Development Plan of China(No.2017YFB1201003-020)National Natural Science Foundation of China(Nos.61663020,61661027)。
文摘This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results.
基金supported by the National Nature Science Foundation of China under Grant Nos.61104050,61203029the Natural Science Foundation of Shandong Province under Grant No.ZR2011FQ020+2 种基金the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2013DX008the Graduate Education Innovation Project of Shandong Province under Grant No.SDYC12006the Ph.D.Foundation Program of University of Jinan under Grant No.XBS1044
文摘This paper is concerned with the optimal and suboptimal deconvolution problems for discrete-time systems with random delayed observations. When the random delay is known online, i.e., time stamped, the random delayed system is reconstructed as an equivalent delay-free one by using measurement reorganization technique, and then an optimal input white noise estimator is presented based on the stochastic Kahnan filtering theory. However, tb_e optimal white-noise estimator is timevarying, stochastic, and doesn't converge to a steady state in general. Then an alternative suboptimal input white-noise estimator with deterministic gains is developed under a new criteria. The estimator gain and its respective error covariance-matrix information are derived based on a new suboptimal state estimator. It can be shown that the suboptimal input white-noise estimator converges to a steady-state one under appropriate assumptions.