This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were an...This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials.These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene).The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP.Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain.Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1000 m, 1500 m, and 2 000 m using various mooring materials.The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM.Fresh attempts were then made to comparatively evaluate the mooring system's characteristics and global performance.Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations.The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.展开更多
In recent years, with the opening and economic development in Liangshan Yi nationality area, the products with liangshan Yi nationality cultural features are becoming more and more popular among the public, which has ...In recent years, with the opening and economic development in Liangshan Yi nationality area, the products with liangshan Yi nationality cultural features are becoming more and more popular among the public, which has produced a certain economic benefit in the market. However, with the lYesh feeling of consumers for Yi nationality pattern disappearing, the packages of simply using Yi nationality culture pattern have lost the market value. Studying the Yi nationality culture and making innovation can make it contribute to the market economy and also inheriting the Yi nationality culture is a very valuable thing. This paper makes a reasonable decomposition and combination of the Yi nationality pattern and uses it in graphic package design for detection research.展开更多
Fe3O4 is a promising high-capacity anode material for lithium ion batteries, but challenges including short cycle life and low rate capability hinder its widespread implementation. In this work, a well-defined tubular...Fe3O4 is a promising high-capacity anode material for lithium ion batteries, but challenges including short cycle life and low rate capability hinder its widespread implementation. In this work, a well-defined tubular structure constructed by carbon-coated Fe3O4 has been successfully fabricated with hierarchically porous structure, high surface area, and suitable thickness of carbon layer. Such purposely designed hybrid nanostructures have an enhanced electronic/ionic conductivity, stable electrode/electrolyte interface, and physical buffering effect arising from the nanoscale combination of carbon with Fe3O4, as well as the hollow, aligned and hierarchically porous architectures. When used as an anode material for a lithium-ion half cell, the carbon-coated hierarchical Fe3O4 nanotubes showed excellent cycling performance with a specific capacity of 1,020 mAh.g^-1 at 200 mA.g^-1 after 150 cycles, a capacity retention of ca. 103%. Even at a higher current density of 1,000 mA·g^-1, a capacity of 840 mAh·g^-1 is retained after 300 cycles with no capacity loss. In particular, a superior rate capability can be obtained with a stable capacity of 355 mAh.g^-1 at 8,000 mA·g^-1. The encouraging results indicate that hierarchically tubular hybrid nanostructures can have important implications for the development of high-rate electrodes for future rechargeable lithium ion batteries (LIBs).展开更多
基金Supported by China National 111 Project under Grant No.B07019
文摘This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials.These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene).The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP.Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain.Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1000 m, 1500 m, and 2 000 m using various mooring materials.The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM.Fresh attempts were then made to comparatively evaluate the mooring system's characteristics and global performance.Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations.The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.
文摘In recent years, with the opening and economic development in Liangshan Yi nationality area, the products with liangshan Yi nationality cultural features are becoming more and more popular among the public, which has produced a certain economic benefit in the market. However, with the lYesh feeling of consumers for Yi nationality pattern disappearing, the packages of simply using Yi nationality culture pattern have lost the market value. Studying the Yi nationality culture and making innovation can make it contribute to the market economy and also inheriting the Yi nationality culture is a very valuable thing. This paper makes a reasonable decomposition and combination of the Yi nationality pattern and uses it in graphic package design for detection research.
文摘Fe3O4 is a promising high-capacity anode material for lithium ion batteries, but challenges including short cycle life and low rate capability hinder its widespread implementation. In this work, a well-defined tubular structure constructed by carbon-coated Fe3O4 has been successfully fabricated with hierarchically porous structure, high surface area, and suitable thickness of carbon layer. Such purposely designed hybrid nanostructures have an enhanced electronic/ionic conductivity, stable electrode/electrolyte interface, and physical buffering effect arising from the nanoscale combination of carbon with Fe3O4, as well as the hollow, aligned and hierarchically porous architectures. When used as an anode material for a lithium-ion half cell, the carbon-coated hierarchical Fe3O4 nanotubes showed excellent cycling performance with a specific capacity of 1,020 mAh.g^-1 at 200 mA.g^-1 after 150 cycles, a capacity retention of ca. 103%. Even at a higher current density of 1,000 mA·g^-1, a capacity of 840 mAh·g^-1 is retained after 300 cycles with no capacity loss. In particular, a superior rate capability can be obtained with a stable capacity of 355 mAh.g^-1 at 8,000 mA·g^-1. The encouraging results indicate that hierarchically tubular hybrid nanostructures can have important implications for the development of high-rate electrodes for future rechargeable lithium ion batteries (LIBs).