The filter-based reactive packet filtering is a key technology in attack traffic filtering for defending against the Denial-of- Service (DOS) attacks. Two kinds of relevant schemes have been proposed as victim- end ...The filter-based reactive packet filtering is a key technology in attack traffic filtering for defending against the Denial-of- Service (DOS) attacks. Two kinds of relevant schemes have been proposed as victim- end filtering and source-end filtering. The first scheme prevents attack traffic from reaching the victim, but causes the huge loss of legitimate flows due to the scarce filters (termed as collateral damages); the other extreme scheme can obtain the sufficient filters, but severely degrades the network transmission performance due to the abused filtering routers. In this paper, we propose a router based packet filtering scheme, which provides relatively more filters while reducing the quantity of filtering touters. We implement this scheme on the emulated DoS scenarios based on the synthetic and real-world Internet topologies. Our evaluation results show that compared to the previous work, our scheme just uses 20% of its filtering routers, but only increasing less than 15 percent of its collateral damage.展开更多
Recently, attacks have become Denial-of-Service (DOS) the mainstream threat to the internet service availability. The filter-based packet filtering is a key technology to defend against such attacks. Relying on the ...Recently, attacks have become Denial-of-Service (DOS) the mainstream threat to the internet service availability. The filter-based packet filtering is a key technology to defend against such attacks. Relying on the filtering location, the proposed schemes can be grouped into Victim-end Filtering and Source-end Filtering. The first scheme uses a single filtering router to block the attack flows near the victim, but does not take the factor that the filters are scarce resource into account, which causes the huge loss of legitimate flows; considering each router could contribute a few filters, the other extreme scheme pushes the filtering location back into each attack source so as to obtain ample filters, but this may incur the severe network transmission delay due to the abused filtering routers. Therefore, in this paper, we propose a scalable filter-based packet filtering scheme to balance the number of filtering routers and the available filters. Through emulating DoS scenarios based on the synthetic and real-world Intemet topologies and further implementing the various filter-based packet filtering schemes on them, the results show that our scheme just uses fewer filtering routers to cut off all attack flows while minimizing the loss of legitimate flows.展开更多
基金supported in part by the funding agencies of china:the Doctoral Fund of Northeastern University of Qinhuangdao(Grant No.XNB201410)the Fundamental Research Funds for the Central Universities(Grant No.N130323005)
文摘The filter-based reactive packet filtering is a key technology in attack traffic filtering for defending against the Denial-of- Service (DOS) attacks. Two kinds of relevant schemes have been proposed as victim- end filtering and source-end filtering. The first scheme prevents attack traffic from reaching the victim, but causes the huge loss of legitimate flows due to the scarce filters (termed as collateral damages); the other extreme scheme can obtain the sufficient filters, but severely degrades the network transmission performance due to the abused filtering routers. In this paper, we propose a router based packet filtering scheme, which provides relatively more filters while reducing the quantity of filtering touters. We implement this scheme on the emulated DoS scenarios based on the synthetic and real-world Internet topologies. Our evaluation results show that compared to the previous work, our scheme just uses 20% of its filtering routers, but only increasing less than 15 percent of its collateral damage.
基金supported by the Doctoral Fund of Northeastern University of Qinhuangdao(No.XNB201410)the Fundamental Research Funds for the Central Universities(No.N130323005)+1 种基金the Natural Science Foundation of Hebei Province of China(No.F2015501122)the Doctoral Scientific Research Foundation of Liaoning Province(No.201501143)
文摘Recently, attacks have become Denial-of-Service (DOS) the mainstream threat to the internet service availability. The filter-based packet filtering is a key technology to defend against such attacks. Relying on the filtering location, the proposed schemes can be grouped into Victim-end Filtering and Source-end Filtering. The first scheme uses a single filtering router to block the attack flows near the victim, but does not take the factor that the filters are scarce resource into account, which causes the huge loss of legitimate flows; considering each router could contribute a few filters, the other extreme scheme pushes the filtering location back into each attack source so as to obtain ample filters, but this may incur the severe network transmission delay due to the abused filtering routers. Therefore, in this paper, we propose a scalable filter-based packet filtering scheme to balance the number of filtering routers and the available filters. Through emulating DoS scenarios based on the synthetic and real-world Intemet topologies and further implementing the various filter-based packet filtering schemes on them, the results show that our scheme just uses fewer filtering routers to cut off all attack flows while minimizing the loss of legitimate flows.