For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
A class of networked control systems is investigated whose communication network is shared with other applications. The design objective for such a system setting is not only the optimization of the control performanc...A class of networked control systems is investigated whose communication network is shared with other applications. The design objective for such a system setting is not only the optimization of the control performance but also the efficient utilization of the communication resources. We observe that at a large time scale the data packet delay in the communication network is roughly varying piecewise constant, which is typically true for data networks like the Internet. Based on this observation, a dynamic data packing scheme is proposed within the recently developed packet-based control framework for networked control systems. As expected this proposed approach achieves a fine balance between the control performance and the communication utilization: the similar control performance can be obtained at dramatically reduced cost of the communication resources. Simulations illustrate the effectiveness of the proposed approach.展开更多
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.6142230761174061&61304048)+4 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of Chinathe National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2014AA06A503)the Youth Innovation Promotion Association,Chinese Academy of Sciences,in part by the Youth Top-Notch Talent Support Programthe 1000-Talent Youth ProgramZhejiang 1000-Talent Program
文摘A class of networked control systems is investigated whose communication network is shared with other applications. The design objective for such a system setting is not only the optimization of the control performance but also the efficient utilization of the communication resources. We observe that at a large time scale the data packet delay in the communication network is roughly varying piecewise constant, which is typically true for data networks like the Internet. Based on this observation, a dynamic data packing scheme is proposed within the recently developed packet-based control framework for networked control systems. As expected this proposed approach achieves a fine balance between the control performance and the communication utilization: the similar control performance can be obtained at dramatically reduced cost of the communication resources. Simulations illustrate the effectiveness of the proposed approach.