-
题名基于IEWT和IWAAE的滚动轴承故障识别研究
被引量:1
- 1
-
-
作者
韩建哲
艾建军
邓名姣
袁朴
-
机构
保定职业技术学院机电工程系
华南理工大学机械与汽车工程学院
-
出处
《机电工程》
CAS
北大核心
2022年第5期655-661,共7页
-
基金
国家自然科学基金资助项目(51875205)。
-
文摘
通过深度学习实现轴承故障识别时,存在着因信号噪声导致故障识别率较低的问题,针对这一问题,提出了一种基于改进经验小波变换(IEWT)和改进Wasserstein自编码器(IWAAE)的轴承故障识别方法。首先,将轴承振动数据由时域变换到包络谱域,通过包络谱的极值点与自适应阈值的关系对其进行了包络谱自动分割,进而利用经验小波变换,将数据自动分解为不同频段的调幅调频分量,并采用改进峭度指标对选取合适的分量进行了重构,进而对信号进行了有效降噪;然后,针对变分自编码器训练困难的缺陷,引入Wasserstein自编码器,根据Wasserstein自编码器中间层神经元的激活值大小,对神经元进行了自动增加或删减,进而构造了IWAAE;最后,将重构信号输入到IWAAE中,进行了滚动轴承故障特征的自动提取和故障识别。研究结果表明:与其它的轴承故障识别方法相比,采用IEWT-IWAAE方法的故障识别精度更高,准确率可达99.28%,标准差仅0.32;该方法能在一定程度上缓解传统方法对人工特征提取和特征选择的依赖,其对噪声的鲁棒性高,故障识别能力优于其他组合模型方法。
-
关键词
旋转机械
包络谱分割
改进经验小波变换
改进Wasserstein自编码器
故障特征提取
信号降噪
-
Keywords
rotating machine
envelope spectrum segmentation
improved empirical wavelet transforms(IEWT)
improved Wasserstein auto-encoder(IWAAE)
fault feature extraction
signal noise reduction
-
分类号
TH133.3
[机械工程—机械制造及自动化]
-