The corrugated packing is prone to break down easily, which can affect the tower efficiency substantially. It is the inner environment of the vacuum distillation tower including the temperature and chemical nature of ...The corrugated packing is prone to break down easily, which can affect the tower efficiency substantially. It is the inner environment of the vacuum distillation tower including the temperature and chemical nature of fluid that lead to the packing damage. The theoretical analysis indicates that it is the inner material flow of vacuum distillation tower that leads to the vibration of packing, which can affect the corrosion fatigue of packing significantly. Meanwhile, the modal shape and inherent frequency of packing under prestress can be obtained by means of mathematical analysis. Based on the two kinds of analysis, the flow induced vibration and corrosion fatigue are accountable for the failure of packing.展开更多
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ...Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.展开更多
Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lea...Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lead to large simulation times, often exceeding transient real time. Artificial neural networks (ANNs) may be advantageous in this context, the main advantage being the speed of computation, the capability of generalizing from the few examples, robustness to noisy and partially incomplete data and the capability of performing empirical input-output mapping without complete knowledge of underlying physics. In this paper, the simulation of steam generator is considered as an example to show the potentialities of this tool. The data required for training and testing the ANN is taken from the steam generator at Abott Power Plant, Champaign (USA). The total number of samples is 9600 which are taken at a sampling time of three seconds. The performance of boiler (drum pressure, steam flow rate) has been verified and tested using ANN, under the changes in fuel flow rate, air flow rate and load disturbance. Using ANN, input-output mapping is done and it is observed that ANN allows a good reproduction of non-linear behaviors of inputs and outputs.展开更多
The disturbance, caused by the boiling Phenomena in the inverted meniscus ac evaporator, is of great importancein the normal operation of the CPL, especially When the heat load is low. By theoretical and experimental ...The disturbance, caused by the boiling Phenomena in the inverted meniscus ac evaporator, is of great importancein the normal operation of the CPL, especially When the heat load is low. By theoretical and experimental studies onthis issue, it shows that the evaporator of the CPL operates in a mode of boiling in the Wick. By solving a set ofmomentum equations, it concludes that, this kind of boiling Phenomena in the wick cause no notable negativeinfluence on the normal peiformance of the CPL, although there really edests some adVerse influence during theCPL start-up. Addihonally, the causes of the dry-out of the evaporator under low heat load are conducted in thepaper. The conclusions are verified by subsequent experiments. More details about the experiments are alsodescribed in the paper.展开更多
文摘The corrugated packing is prone to break down easily, which can affect the tower efficiency substantially. It is the inner environment of the vacuum distillation tower including the temperature and chemical nature of fluid that lead to the packing damage. The theoretical analysis indicates that it is the inner material flow of vacuum distillation tower that leads to the vibration of packing, which can affect the corrosion fatigue of packing significantly. Meanwhile, the modal shape and inherent frequency of packing under prestress can be obtained by means of mathematical analysis. Based on the two kinds of analysis, the flow induced vibration and corrosion fatigue are accountable for the failure of packing.
基金Project(51276023) supported by the National Natural Science Foundation of ChinaProject(09k069) supported by the Open Project Funded by Universities Innovation Platform, Hunan Province, ChinaProject(2011GK311) supported by the Office of Science and Technology of Hunan Province, China
文摘Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.
文摘Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lead to large simulation times, often exceeding transient real time. Artificial neural networks (ANNs) may be advantageous in this context, the main advantage being the speed of computation, the capability of generalizing from the few examples, robustness to noisy and partially incomplete data and the capability of performing empirical input-output mapping without complete knowledge of underlying physics. In this paper, the simulation of steam generator is considered as an example to show the potentialities of this tool. The data required for training and testing the ANN is taken from the steam generator at Abott Power Plant, Champaign (USA). The total number of samples is 9600 which are taken at a sampling time of three seconds. The performance of boiler (drum pressure, steam flow rate) has been verified and tested using ANN, under the changes in fuel flow rate, air flow rate and load disturbance. Using ANN, input-output mapping is done and it is observed that ANN allows a good reproduction of non-linear behaviors of inputs and outputs.
文摘The disturbance, caused by the boiling Phenomena in the inverted meniscus ac evaporator, is of great importancein the normal operation of the CPL, especially When the heat load is low. By theoretical and experimental studies onthis issue, it shows that the evaporator of the CPL operates in a mode of boiling in the Wick. By solving a set ofmomentum equations, it concludes that, this kind of boiling Phenomena in the wick cause no notable negativeinfluence on the normal peiformance of the CPL, although there really edests some adVerse influence during theCPL start-up. Addihonally, the causes of the dry-out of the evaporator under low heat load are conducted in thepaper. The conclusions are verified by subsequent experiments. More details about the experiments are alsodescribed in the paper.