In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an...To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.展开更多
Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] ...Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] on the reaction course had been examined and it was found that T(p-Cl)PPCu presented the highest catalytic activ- ity in the reaction.The reaction conditions of toluene oxidation were optimized by using orthogonal experiment de- sign.Five relevant factors were investigated:temperature,air pressure,catalyst loading,air flow rate and reaction time.The effects of the five factors on both toluene conversion and total yield of benzaldehyde and benzyl alcohol were discussed.The research results showed that the reaction temperature was the most significant factor influenc- ing toluene oxidation.On the basis of the margin analysis,the optimum conditions for the toluene conversion and the total yield of benzaldehyde and benzyl alcohol respectively were achieved,under which the toluene conversion was up to 14.67%and the total yield of benzaldehyde and benzyl alcohol reached 5.89%.展开更多
In this paper, the optimum process parameters were obtained through treating phenol of simulated semi-coking wastewater using heat, Fe2+, Fe^0 and semi-coke to catalyze persulfate. The results of phenol decomposition...In this paper, the optimum process parameters were obtained through treating phenol of simulated semi-coking wastewater using heat, Fe2+, Fe^0 and semi-coke to catalyze persulfate. The results of phenol decomposition using PS catalyzed by heating, Fe2+, Fe^0 and semi-coke were compared for selecting a better activating way. The article investigated the effects of temperature, catalyzer dosage, pH value and reaction time. The experiment showed the four methods can all catalyzed the process. Under the experimental conditions of heating, Fe2+, Fe^0 and semi-coke degradation rate could reach to 20.7%, 75.1%, 94.5% and 40.0%, respectively. On this basis, this study established an Lt6(45) table to analyze the main influencing factors in semi-coke/Fe^0 catalyzing system. Under the optimum conditions, the degradation rate of Phenol reached to 93.6%. However, the PS dosage was reduced by 14.4%.展开更多
In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylen...In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylene projects in China after 2006 and debottlenecking and expansion of existing ethylene units China will be confronted with the major issues related with increase of feedstocks for steam cracking. Naphtha is the main feedstock for producing ethylene, and the hydrocracked tail oil is increasing its share in the steam cracker feedstock pool over recent years. This article has analyzed the possibility for maximization of steam cracking feedstock and estimated steam cracker feedstock output based on processing 5 Mt/a of different crudes including the mixed crude transferred through Lu-Ning pipeline and Arabian light crude using corresponding process technologies at the refinery.展开更多
To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility...To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.展开更多
A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and tra...A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The catalytic activity of these catalysts was evaluated for the selective catalytic reduction(SCR) of NO with NH_3 as reductant in the presence of oxygen.The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N_2 was 80%at 300 ℃,which was the best among various promoted metals.Design of experiments(DOEs) with Taguchi method was employed to optimize NH_3-SCR process parameters such as NH_3/NO ratio,O_2 concentration,and gas hourly space velocity(GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃.Results showed that the most important parameter in NH_3-SCR of NO is O_2 concentration;followed by NH_3/NO ratio and GHSV has little importance.The NO conversion to N_2 of 63.1%and 94.86%was observed at 250℃ and 300℃,respectively under the obtained optimum conditions.展开更多
In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools...In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.展开更多
Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the ga...Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the gas-liquid exothermic reaction and axial dispersions of both gas and liquid phase is employed to study the performance of EBCR for the process of p-xylene(PX) oxidation. The computational results show that there are remarkable concentration and temperature gradients in EBCR for high ratio of height to diameter (H/DT). The temperature is lower at the bottom of column and higher at the top, due to rapid evaporation induced by the feed gas near the bottom. The concentration profiles in the gas phase are more nonuniform than those (except PX) in the liquid phase, which causes more solvent burning consumption at high H/DT ratio. For p-xylene oxidation, theo ptimal H/DT is around 5.展开更多
This article mainly worked on methods to reduce side reactions of the de-ethylating type catalyst for xylene isomerization. In laboratory the de-ethylating type catalyst for xylene isomerization was subjected to steam...This article mainly worked on methods to reduce side reactions of the de-ethylating type catalyst for xylene isomerization. In laboratory the de-ethylating type catalyst for xylene isomerization was subjected to steam treatment at different temperatures and durations to achieve dealumination of the ZSM-5 zeolite to some extent, which could affect the change in BrФnsted acid content to decrease xylene loss along with reduction of side reactions. Test results showed that the degree for reducing side reactions by steam treatment depended upon two important parameters-treating temperature and duration. The optimal condition required treating the catalyst at 500℃ for 8 hours.展开更多
The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technolo...The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.展开更多
To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studie...To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studied using OM, SEM, EBSD and tensile test. The experimental results suggest that the solution treatment could be completed in a shorter time at a temperature much lower than the conventional practice. Surface blistering could be avoided and substantial strengthening effect could be achieved in the following aging process. Prolonging solution treatment time and elevating solution temperature would be meaningless or even harmful. The rapid evolution of eutectic silicon during solution treatment, especially at the early stage, affected the way of interaction among α-Al grains during plastic deformation, and changed the ultimate mechanical properties and fracture mode.展开更多
Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upo...Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively.展开更多
The catalytic pyrolyses of rayon have been studied respectively by thermo-gravimetric analysis (TGA) when rayon was treated with phosphoric acid (PA), three ammonium phosphate salts and ammonium sulfate (AS). The air ...The catalytic pyrolyses of rayon have been studied respectively by thermo-gravimetric analysis (TGA) when rayon was treated with phosphoric acid (PA), three ammonium phosphate salts and ammonium sulfate (AS). The air is favorable to the catalysis of dibasic ammonium phosphate (DAP), but not to those of ADP, PA, AP, and AS obviously. It is put forward that a peak’s shape character can be described with the ratio of height to half-height-width (H/W /2) of the peak on a differential thermo-gravimetric (DTG) curve. A flat cracking peak, presenting a more moderate dehydration reaction, has a smaller ratio and could lead to higher carbonization and activation yields. The experimental results prove this view. According to expectation, the order of catalysis is: DAP≥ADP>PA> APAS no catalyst.展开更多
This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity a...This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity and hydrogen/oil ratio on the distribution and quality of products was analyzed with the optimal process regime determined, when the VGO was hydrocracked in the presence of the FC-16 catalyst.展开更多
The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic para...The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃.展开更多
A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposi...A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
基金Project(12511075)supported by the Foundation of Heilongjiang Education Committee,China
文摘To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.
基金Supported by the National'Natural Science Foundation of China (No.20376018) and the National High Technology Development Program of China (No.2006AA32Z467).
文摘Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] on the reaction course had been examined and it was found that T(p-Cl)PPCu presented the highest catalytic activ- ity in the reaction.The reaction conditions of toluene oxidation were optimized by using orthogonal experiment de- sign.Five relevant factors were investigated:temperature,air pressure,catalyst loading,air flow rate and reaction time.The effects of the five factors on both toluene conversion and total yield of benzaldehyde and benzyl alcohol were discussed.The research results showed that the reaction temperature was the most significant factor influenc- ing toluene oxidation.On the basis of the margin analysis,the optimum conditions for the toluene conversion and the total yield of benzaldehyde and benzyl alcohol respectively were achieved,under which the toluene conversion was up to 14.67%and the total yield of benzaldehyde and benzyl alcohol reached 5.89%.
文摘In this paper, the optimum process parameters were obtained through treating phenol of simulated semi-coking wastewater using heat, Fe2+, Fe^0 and semi-coke to catalyze persulfate. The results of phenol decomposition using PS catalyzed by heating, Fe2+, Fe^0 and semi-coke were compared for selecting a better activating way. The article investigated the effects of temperature, catalyzer dosage, pH value and reaction time. The experiment showed the four methods can all catalyzed the process. Under the experimental conditions of heating, Fe2+, Fe^0 and semi-coke degradation rate could reach to 20.7%, 75.1%, 94.5% and 40.0%, respectively. On this basis, this study established an Lt6(45) table to analyze the main influencing factors in semi-coke/Fe^0 catalyzing system. Under the optimum conditions, the degradation rate of Phenol reached to 93.6%. However, the PS dosage was reduced by 14.4%.
文摘In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylene projects in China after 2006 and debottlenecking and expansion of existing ethylene units China will be confronted with the major issues related with increase of feedstocks for steam cracking. Naphtha is the main feedstock for producing ethylene, and the hydrocracked tail oil is increasing its share in the steam cracker feedstock pool over recent years. This article has analyzed the possibility for maximization of steam cracking feedstock and estimated steam cracker feedstock output based on processing 5 Mt/a of different crudes including the mixed crude transferred through Lu-Ning pipeline and Arabian light crude using corresponding process technologies at the refinery.
基金Project(2009ZX07315-002-01) supported by the Water Pollution Control and Management of Major Special Science and Technology, China Project(CDJXS11210001) supported by the Scientific and Technical Innovation Project of Chongqing University Graduation Foundation, China
文摘To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.
基金financial support from University of Tabriz and Iranian Nanotechnology Initiative
文摘A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The catalytic activity of these catalysts was evaluated for the selective catalytic reduction(SCR) of NO with NH_3 as reductant in the presence of oxygen.The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N_2 was 80%at 300 ℃,which was the best among various promoted metals.Design of experiments(DOEs) with Taguchi method was employed to optimize NH_3-SCR process parameters such as NH_3/NO ratio,O_2 concentration,and gas hourly space velocity(GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃.Results showed that the most important parameter in NH_3-SCR of NO is O_2 concentration;followed by NH_3/NO ratio and GHSV has little importance.The NO conversion to N_2 of 63.1%and 94.86%was observed at 250℃ and 300℃,respectively under the obtained optimum conditions.
文摘In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.
基金Supported by the National Natural Science Foundation of China (No. 20076039) and SINOPEC.
文摘Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the gas-liquid exothermic reaction and axial dispersions of both gas and liquid phase is employed to study the performance of EBCR for the process of p-xylene(PX) oxidation. The computational results show that there are remarkable concentration and temperature gradients in EBCR for high ratio of height to diameter (H/DT). The temperature is lower at the bottom of column and higher at the top, due to rapid evaporation induced by the feed gas near the bottom. The concentration profiles in the gas phase are more nonuniform than those (except PX) in the liquid phase, which causes more solvent burning consumption at high H/DT ratio. For p-xylene oxidation, theo ptimal H/DT is around 5.
文摘This article mainly worked on methods to reduce side reactions of the de-ethylating type catalyst for xylene isomerization. In laboratory the de-ethylating type catalyst for xylene isomerization was subjected to steam treatment at different temperatures and durations to achieve dealumination of the ZSM-5 zeolite to some extent, which could affect the change in BrФnsted acid content to decrease xylene loss along with reduction of side reactions. Test results showed that the degree for reducing side reactions by steam treatment depended upon two important parameters-treating temperature and duration. The optimal condition required treating the catalyst at 500℃ for 8 hours.
文摘The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.
基金Project(U1537202) supported by the National Natural Science Foundation of ChinaProject(BA2015041) supported by the Special Funding Program on Transformation of Scientific and Technological Achievements in Jiangsu Province,China
文摘To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studied using OM, SEM, EBSD and tensile test. The experimental results suggest that the solution treatment could be completed in a shorter time at a temperature much lower than the conventional practice. Surface blistering could be avoided and substantial strengthening effect could be achieved in the following aging process. Prolonging solution treatment time and elevating solution temperature would be meaningless or even harmful. The rapid evolution of eutectic silicon during solution treatment, especially at the early stage, affected the way of interaction among α-Al grains during plastic deformation, and changed the ultimate mechanical properties and fracture mode.
基金Supported by the National Environmental Protection Bureau of P.R.China(Huan-Ke-Ke,1997,No.006,Project 14),China-Japan cooperative project:"Research on energy savings and alleviating environmental burden in petroleum enterprises"of Institute of Industrial
文摘Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively.
文摘The catalytic pyrolyses of rayon have been studied respectively by thermo-gravimetric analysis (TGA) when rayon was treated with phosphoric acid (PA), three ammonium phosphate salts and ammonium sulfate (AS). The air is favorable to the catalysis of dibasic ammonium phosphate (DAP), but not to those of ADP, PA, AP, and AS obviously. It is put forward that a peak’s shape character can be described with the ratio of height to half-height-width (H/W /2) of the peak on a differential thermo-gravimetric (DTG) curve. A flat cracking peak, presenting a more moderate dehydration reaction, has a smaller ratio and could lead to higher carbonization and activation yields. The experimental results prove this view. According to expectation, the order of catalysis is: DAP≥ADP>PA> APAS no catalyst.
文摘This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity and hydrogen/oil ratio on the distribution and quality of products was analyzed with the optimal process regime determined, when the VGO was hydrocracked in the presence of the FC-16 catalyst.
基金Project 50474056 supported by the National Natural Science Foundation of China
文摘The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃.
基金Supported by the Chinese National Key Basic Research Special Fund (No.2001CB6104) and the National Natural Science Foundation of China(No.20076027)
文摘A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.