The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, co...The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, content of iron particles, dynamic strain, and driving frequency on the damping properties of MR elastomers were investigated experimentally. The experimental results indicate that the damping properties of MR elastomers greatly depend on the interfacial slipping between the inner particles and the matrix. Different from general composite materials, the interracial slipping in MR elastomers is affected by the external applied magnetic field.展开更多
We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the...We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones—drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming(NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composition of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic efficiency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the process will reach an optimum value of 78.3% when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, respectively.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10672154) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20050358010).
文摘The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, content of iron particles, dynamic strain, and driving frequency on the damping properties of MR elastomers were investigated experimentally. The experimental results indicate that the damping properties of MR elastomers greatly depend on the interfacial slipping between the inner particles and the matrix. Different from general composite materials, the interracial slipping in MR elastomers is affected by the external applied magnetic field.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(U1162121)
文摘We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones—drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming(NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composition of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic efficiency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the process will reach an optimum value of 78.3% when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, respectively.