Chemical potentials of charged hard-dumbbell fluids are obtained by Monte Carlo simulations using Widom's test-particle method, corresponding compressibility factors are achieved by integration of chemical potenti...Chemical potentials of charged hard-dumbbell fluids are obtained by Monte Carlo simulations using Widom's test-particle method, corresponding compressibility factors are achieved by integration of chemical potentials at different densities. A molecular thermodynamic model is also developed for these charged hard-dumbbell fluids where the residual Helmholtz function is composed of two terms: a reference term responsible for the charged hard spheres and a bonding contribution measuring the sticky interactions between positive and negative hard ions.Model predictions are in good agreement with simulation results.展开更多
We propose a new method for calculating the dressed fermion propagator at finite chemical potential in QED3 under the rainbow approximation of Dyson-Schwinger equation. In the above approximation, we show that the dre...We propose a new method for calculating the dressed fermion propagator at finite chemical potential in QED3 under the rainbow approximation of Dyson-Schwinger equation. In the above approximation, we show that the dressed fermion propagator at finite chemical potential # has the form S(p) = iγ.p^-A(p^-2) + B( p^-2) with p^-μ= (p^-1p3 + iμ). Using this form of fermion propagator at nonzero chemical potential, we investigate the Dyson-Schwinger equation for the dressed fermion propagator at finite chemical potential and study the effects of the chemical potential on the critical number of the fermion flavors.展开更多
A new potential energy surface is presented for the triplet state 3At of the chemical reaction S(3P)+H2 from a set of accurate ab initio data. The single point energies are computed using highly correlated complete...A new potential energy surface is presented for the triplet state 3At of the chemical reaction S(3P)+H2 from a set of accurate ab initio data. The single point energies are computed using highly correlated complete active space self-consistent-field and multi-reference configuration interaction wave functions with a basis set of aug-cc-pV5Z. We have fitted the full set of energy values using many-body expansion method with an Aguado-Paniagua function. Based on the new potential energy surface, we carry out the time-dependent wave packet scattering calculations over the collision energy range of 0.8-2.2 eV. Both the centrifugalsudden approximation and Coriolis Coupling cross sections are obtained. In addition, the total reaction probabilities are calculated for the reactant H2 initially in the vibrational states v=0-3 (j=0). It is found that initial vibrational excitation enhances the title reaction.展开更多
Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the co...Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc.展开更多
The van der Waals (vdW) interaction is very important in fields of physics, biology and chemistry, and its role in reaction dynamics is an issue of great interest. In this review, we focus on the recent progresses in ...The van der Waals (vdW) interaction is very important in fields of physics, biology and chemistry, and its role in reaction dynamics is an issue of great interest. In this review, we focus on the recent progresses in the theoretical and experimental studies on the vdW interaction in bimolecular reactions. In particular, we review those studies that have advanced our understanding of how the vdW interaction can strongly influence the dynamics in both direct activated and complex-forming reactions, and further extend the discussion to the polyatomic reactions involving more atoms and those occurring at cold and ultracold temperatures. We indicate that an accurate description of the delicate vdW structure and long-range potential remains a challenge nowadays in either ab initio calculations or the fitting of the potential energy surfaces. We also present an explanation on the concept of vdW saddle proposed by us recently which may have general importance.展开更多
Dissociative chemisorption of methane on a nickel surface is a prototypical system for studying mode-specific chemistry in gassurface reactions.We recently developed a fifteen-dimensional potential energy surface for ...Dissociative chemisorption of methane on a nickel surface is a prototypical system for studying mode-specific chemistry in gassurface reactions.We recently developed a fifteen-dimensional potential energy surface for this system which has proven to be chemically accurate in reproducing the measured absolute dissociative sticking probabilities of CHD_3in thermal conditions and with vibrational excitation on Ni(111)at high incident energies.Here,using this new potential energy surface,we explored mode specificity and bond selectivity for CHD_3and CH_2D_2dissociative chemisorption at low incidence energies down to^50 k J/mol via a quasi-classical trajectory method.Our calculated dissociation probabilities are consistent with previous theoretical and experimental ones with an average shift in translational energy of^8 k J/mol.Our results very well reproduce the C–H/C–D branching ratio upon the C–H local mode excitation,which can be rationalized by the sudden vector projection model.Quantitatively,however,the calculated dissociative sticking probabilities are systematically larger than experimental ones,due presumably to the artificial zero point energy leakage into reaction coordinate.Further high-dimensional quantum dynamics calculations are necessary for acquiring a chemically accurate description of methane dissociative chemisorption at low incident energies.展开更多
基金Supported bv the National Natural Science Foundation of China (No.29736170, 29876006).
文摘Chemical potentials of charged hard-dumbbell fluids are obtained by Monte Carlo simulations using Widom's test-particle method, corresponding compressibility factors are achieved by integration of chemical potentials at different densities. A molecular thermodynamic model is also developed for these charged hard-dumbbell fluids where the residual Helmholtz function is composed of two terms: a reference term responsible for the charged hard spheres and a bonding contribution measuring the sticky interactions between positive and negative hard ions.Model predictions are in good agreement with simulation results.
基金the National Natural Science Foundation of China under,高等学校博士学科点专项科研项目
文摘We propose a new method for calculating the dressed fermion propagator at finite chemical potential in QED3 under the rainbow approximation of Dyson-Schwinger equation. In the above approximation, we show that the dressed fermion propagator at finite chemical potential # has the form S(p) = iγ.p^-A(p^-2) + B( p^-2) with p^-μ= (p^-1p3 + iμ). Using this form of fermion propagator at nonzero chemical potential, we investigate the Dyson-Schwinger equation for the dressed fermion propagator at finite chemical potential and study the effects of the chemical potential on the critical number of the fermion flavors.
文摘A new potential energy surface is presented for the triplet state 3At of the chemical reaction S(3P)+H2 from a set of accurate ab initio data. The single point energies are computed using highly correlated complete active space self-consistent-field and multi-reference configuration interaction wave functions with a basis set of aug-cc-pV5Z. We have fitted the full set of energy values using many-body expansion method with an Aguado-Paniagua function. Based on the new potential energy surface, we carry out the time-dependent wave packet scattering calculations over the collision energy range of 0.8-2.2 eV. Both the centrifugalsudden approximation and Coriolis Coupling cross sections are obtained. In addition, the total reaction probabilities are calculated for the reactant H2 initially in the vibrational states v=0-3 (j=0). It is found that initial vibrational excitation enhances the title reaction.
文摘Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc.
基金supported by the National Natural Science Foundation of China (No.21773251 and No.91741106)the Beijing National Laboratory for Molecular Sciences and Chinese Academy of Sciences
文摘The van der Waals (vdW) interaction is very important in fields of physics, biology and chemistry, and its role in reaction dynamics is an issue of great interest. In this review, we focus on the recent progresses in the theoretical and experimental studies on the vdW interaction in bimolecular reactions. In particular, we review those studies that have advanced our understanding of how the vdW interaction can strongly influence the dynamics in both direct activated and complex-forming reactions, and further extend the discussion to the polyatomic reactions involving more atoms and those occurring at cold and ultracold temperatures. We indicate that an accurate description of the delicate vdW structure and long-range potential remains a challenge nowadays in either ab initio calculations or the fitting of the potential energy surfaces. We also present an explanation on the concept of vdW saddle proposed by us recently which may have general importance.
基金supported by the National Key R&D Program of China (2017YFA0303500)the National Natural Science Foundation of China (91645202, 21722306, 21573203)+1 种基金Anhui Initiative in Quantum Information Technologiespartially supported by Fundamental Research Funds for the Central Universities (WK2060190082, WK2340000078)
文摘Dissociative chemisorption of methane on a nickel surface is a prototypical system for studying mode-specific chemistry in gassurface reactions.We recently developed a fifteen-dimensional potential energy surface for this system which has proven to be chemically accurate in reproducing the measured absolute dissociative sticking probabilities of CHD_3in thermal conditions and with vibrational excitation on Ni(111)at high incident energies.Here,using this new potential energy surface,we explored mode specificity and bond selectivity for CHD_3and CH_2D_2dissociative chemisorption at low incidence energies down to^50 k J/mol via a quasi-classical trajectory method.Our calculated dissociation probabilities are consistent with previous theoretical and experimental ones with an average shift in translational energy of^8 k J/mol.Our results very well reproduce the C–H/C–D branching ratio upon the C–H local mode excitation,which can be rationalized by the sudden vector projection model.Quantitatively,however,the calculated dissociative sticking probabilities are systematically larger than experimental ones,due presumably to the artificial zero point energy leakage into reaction coordinate.Further high-dimensional quantum dynamics calculations are necessary for acquiring a chemically accurate description of methane dissociative chemisorption at low incident energies.