The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and...The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells.展开更多
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co...A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous a...A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.展开更多
The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and t...The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and the activation energy was 6.13 × 10^4 kJ/kmol. The experiment of recovery of dilute acetic acid was conducted in a packed bed catalytic distillation column. The optireal process parameters and operational conditions determined to make up to 85.9% conversion of acetic acid are as follows:the height of catalyst bed is 1 100 mm, reflux ratio is 4: 1, and the ratio of methanol to acetic acid is 2: 1. The method can be used as a guide in industrial scale recovery of 15% 30% dilute acetic acid.展开更多
Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and ap...Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.展开更多
The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and...The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.展开更多
With injection of Injectio Radici Astragli into the point Zusanli (ST 36), we have obtained quite satisfactory therapeutic results for treating leukopenia and the impairment in immune functions occurred in cancer chem...With injection of Injectio Radici Astragli into the point Zusanli (ST 36), we have obtained quite satisfactory therapeutic results for treating leukopenia and the impairment in immune functions occurred in cancer chemotherapy. A report follows.展开更多
Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leach...Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leaching agent concentration, leaching temperature, leaching cumulative time and solid-to-liquid ratio. The thermodynamics and kinetics of the zinc leaching process were also analyzed. The results show that the EAF dust contains 10% (mass fraction) zinc and the median particle size is 0.69 μm. The zinc recovery of 73.4% is obtained tinder the condition of 90 ℃, 6 mol/L NaOH, and 60 min leaching time. With the increase of concentration of NaOH and the cumulative time, zinc leaching will be significantly increased. The kinetics study demonstrates that the leaching reaction is chemically controlled and the reaction activation energy is 15.73 kJ/mol.展开更多
Provskite-type catalysts, Ln0.6 Sr0.4 FexCo1-x O3 (Ln = Nd,Pr, Gd, Sm, La, 0<x<1) and Ln0.8Na0.2CoO3(Ln= La,Gd, Sm) were synthesized, their catalytic properties in the oxidative coupling of methane (OCM) were examin...Provskite-type catalysts, Ln0.6 Sr0.4 FexCo1-x O3 (Ln = Nd,Pr, Gd, Sm, La, 0<x<1) and Ln0.8Na0.2CoO3(Ln= La,Gd, Sm) were synthesized, their catalytic properties in the oxidative coupling of methane (OCM) were examined in a fixed-bed reactor. The former group presented higher activity in the OCM, but the main product was carbon dioxide. While the later group showed lower activity but much higher selectivity to C2 hydrocarbons compared with the former. Electrochemical measurements were conducted in a solid oxide membrane reactor with La0.8 Na0.2CoO3 as catalyst. The results showed that methane was oxidized to carbon dioxide and ethane by two parallel reactions. Ethane was oxidized to ethene and carbon dioxide. A fraction of ethene was oxidized deeply to carbon dioxide. The total selectivity to C2 hydrocarbons exceeded 70%. Based on the experimental results, a kinetic model was suggested to describe the reaction results.展开更多
The potential application of adsorbents made from CEPT sludge in municipal wastewater treatment was investigated under various conditions, such as the adsorbent dosage, pH, and the different dosing order modes of ferr...The potential application of adsorbents made from CEPT sludge in municipal wastewater treatment was investigated under various conditions, such as the adsorbent dosage, pH, and the different dosing order modes of ferric chloride and the adsorbent. The adsorbent obtained from sludge contributes to sludge disposal, while reducing the fresh ferric chloride dosage. The enhanced removal efficiencies of turbidity, UV(254), COD, total phosphorus (TP) are 90.48%,77.80%,50.62% and 96.33% respectively when 3 g/L of the sludge-adsorbent was used in the coagulation process. The maximum adsorption capacity (Q°) of the sludge-adsorbent for COD was over 184.52 mg/gand that for TP was 4.98 mg/gadsorbent optimally as the dosage of the adsorbent was 0.6 g/L. When 10 mg/L of ferric chloride and 0.6 g/L of the adsorbent were used at the first stage simultaneously, the enhanced removal efficiencies of turbidity, UV(254), COD, TP were 83.33%,52.30%,48.84% and 88.96% respectively. The pH value in the raw water played a significant role in the coagulation and adsorption process. The optimum pH value was between 4 and 11.展开更多
Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared ...Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.展开更多
In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermol...In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.展开更多
SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products ...SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products weresieves had a high crystallinity,without any impure phase.Compared with the SAPO-34 prepared by the silica sol,RHA-SAPO-34 had similar acid properties in strength.The methanol to olefins(MTO)experiments showed that the SAPO-34molecular sieve synthesized from RHA exhibited both a good catalytic activity and ethylene selectivity.展开更多
Acetic anhydride is the important organic chemical raw material, and is used widely in chemical industry,pharmaceutical industry, dyes, spices and other fields. In this paper, the process of carbonylation of methyl ac...Acetic anhydride is the important organic chemical raw material, and is used widely in chemical industry,pharmaceutical industry, dyes, spices and other fields. In this paper, the process of carbonylation of methyl acetate in rhodium iodine catalyst system was studied, and the suitable reaction conditions were determined.At the same time, the kinetic model was established. The optimum reaction conditions were as follows: the reaction pressure was 5 MPa, the hydrogen content was 8%, the amount of iodomethane was 15%, the amount of lithium iodide was 3%, the reaction temperature was 150 ℃ and the reaction time is 3 h. Under the above reaction conditions, the selectivity of the reaction is close to 100% and the conversion is as high as 92%. The macroscopic kinetic model of the reaction was established in the temperature range of 120 ℃–150 ℃. The reaction is an irreversible reaction without the formation of by-products and the dynamic equation is also given in the Conclusions section.展开更多
The results of studies of radiation chemical transformations of Balakhani bituminous oil of Azerbaijan are adduced. The IR (infrared) spectra of initial and irradiated samples of tar fractions of bituminous oil are ...The results of studies of radiation chemical transformations of Balakhani bituminous oil of Azerbaijan are adduced. The IR (infrared) spectra of initial and irradiated samples of tar fractions of bituminous oil are compared. The kinetics of radiation chemical yields of gas products at the irradiation of bituminous oil and its tar fraction have been investigated. Irradiation is conducted in the gamma-ray source of isotope 60Co at the dose rate of P = 0.27 Gy/s and absorbed doses D = 5-163 kGy. It is found that in comparison with oil faction, tar fraction of bituminous oil has a high resistance to radiation.展开更多
Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activit...Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts.展开更多
We studied the esterification of free fatty acids (FFA) in tung oil with methanol by using activated carbon treated with sulfuric acid as a catalyst, and investigated the effect of different temperatures, methanol/o...We studied the esterification of free fatty acids (FFA) in tung oil with methanol by using activated carbon treated with sulfuric acid as a catalyst, and investigated the effect of different temperatures, methanol/oil mole ratio and catalyst amount on the conversion of FFA. Results show that the optimal reaction condition is when the reaction time is 2 h, the mass fraction of the catalyst to total material is 5%, the molar ratio of menthol to FFA is 15 : 1, and the reaction temperature is 368.15 K. We also investigated the kinetics of estefification at various temperatures. Results indicate that the rate-control step could be attributed to the surface reaction, and within the range of the experimental conditions, the as-calculated kinetics formula can depict the esterification processes well.展开更多
基金supported by the National Natural Science Foundation of China (21375088,21575090)Scientific Research Project of Beijing Educational Committee (KM201410028006)+1 种基金Scientific Research Base Development Program of the Beijing Municipal Commission of EducationYouth Talent Project of the Beijing Municipal Commission of Education (CIT & TCD201504072)~~
文摘The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells.
基金financially supported by the National Natural Science Foundation of China(21173195)~~
文摘A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
文摘A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.
文摘The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and the activation energy was 6.13 × 10^4 kJ/kmol. The experiment of recovery of dilute acetic acid was conducted in a packed bed catalytic distillation column. The optireal process parameters and operational conditions determined to make up to 85.9% conversion of acetic acid are as follows:the height of catalyst bed is 1 100 mm, reflux ratio is 4: 1, and the ratio of methanol to acetic acid is 2: 1. The method can be used as a guide in industrial scale recovery of 15% 30% dilute acetic acid.
文摘Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.
文摘The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.
文摘With injection of Injectio Radici Astragli into the point Zusanli (ST 36), we have obtained quite satisfactory therapeutic results for treating leukopenia and the impairment in immune functions occurred in cancer chemotherapy. A report follows.
基金Project(20876014) supported by the National Natural Science Foundation of China
文摘Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leaching agent concentration, leaching temperature, leaching cumulative time and solid-to-liquid ratio. The thermodynamics and kinetics of the zinc leaching process were also analyzed. The results show that the EAF dust contains 10% (mass fraction) zinc and the median particle size is 0.69 μm. The zinc recovery of 73.4% is obtained tinder the condition of 90 ℃, 6 mol/L NaOH, and 60 min leaching time. With the increase of concentration of NaOH and the cumulative time, zinc leaching will be significantly increased. The kinetics study demonstrates that the leaching reaction is chemically controlled and the reaction activation energy is 15.73 kJ/mol.
基金This work was supported supported by the Center Petrochemical Company of China (X599027).
文摘Provskite-type catalysts, Ln0.6 Sr0.4 FexCo1-x O3 (Ln = Nd,Pr, Gd, Sm, La, 0<x<1) and Ln0.8Na0.2CoO3(Ln= La,Gd, Sm) were synthesized, their catalytic properties in the oxidative coupling of methane (OCM) were examined in a fixed-bed reactor. The former group presented higher activity in the OCM, but the main product was carbon dioxide. While the later group showed lower activity but much higher selectivity to C2 hydrocarbons compared with the former. Electrochemical measurements were conducted in a solid oxide membrane reactor with La0.8 Na0.2CoO3 as catalyst. The results showed that methane was oxidized to carbon dioxide and ethane by two parallel reactions. Ethane was oxidized to ethene and carbon dioxide. A fraction of ethene was oxidized deeply to carbon dioxide. The total selectivity to C2 hydrocarbons exceeded 70%. Based on the experimental results, a kinetic model was suggested to describe the reaction results.
文摘The potential application of adsorbents made from CEPT sludge in municipal wastewater treatment was investigated under various conditions, such as the adsorbent dosage, pH, and the different dosing order modes of ferric chloride and the adsorbent. The adsorbent obtained from sludge contributes to sludge disposal, while reducing the fresh ferric chloride dosage. The enhanced removal efficiencies of turbidity, UV(254), COD, total phosphorus (TP) are 90.48%,77.80%,50.62% and 96.33% respectively when 3 g/L of the sludge-adsorbent was used in the coagulation process. The maximum adsorption capacity (Q°) of the sludge-adsorbent for COD was over 184.52 mg/gand that for TP was 4.98 mg/gadsorbent optimally as the dosage of the adsorbent was 0.6 g/L. When 10 mg/L of ferric chloride and 0.6 g/L of the adsorbent were used at the first stage simultaneously, the enhanced removal efficiencies of turbidity, UV(254), COD, TP were 83.33%,52.30%,48.84% and 88.96% respectively. The pH value in the raw water played a significant role in the coagulation and adsorption process. The optimum pH value was between 4 and 11.
基金Supported by the National Natural Science Foundation of China(21276076)the Program for New Century Excellent Talents in University(NCET-13-0801)the Fundamental Research Funds for the Central Universities(222201313011)
文摘Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.
基金the financial supports from National Key Project of Scientific and Technical Supporting Programs:Enhancing oil displacement efficiency during steamfloods(fund No.2008ZX05012-001)
文摘In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.
基金supported by the Cultivation Foundation of Northeast Petroleum University(2017PYYL-03)
文摘SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products weresieves had a high crystallinity,without any impure phase.Compared with the SAPO-34 prepared by the silica sol,RHA-SAPO-34 had similar acid properties in strength.The methanol to olefins(MTO)experiments showed that the SAPO-34molecular sieve synthesized from RHA exhibited both a good catalytic activity and ethylene selectivity.
文摘Acetic anhydride is the important organic chemical raw material, and is used widely in chemical industry,pharmaceutical industry, dyes, spices and other fields. In this paper, the process of carbonylation of methyl acetate in rhodium iodine catalyst system was studied, and the suitable reaction conditions were determined.At the same time, the kinetic model was established. The optimum reaction conditions were as follows: the reaction pressure was 5 MPa, the hydrogen content was 8%, the amount of iodomethane was 15%, the amount of lithium iodide was 3%, the reaction temperature was 150 ℃ and the reaction time is 3 h. Under the above reaction conditions, the selectivity of the reaction is close to 100% and the conversion is as high as 92%. The macroscopic kinetic model of the reaction was established in the temperature range of 120 ℃–150 ℃. The reaction is an irreversible reaction without the formation of by-products and the dynamic equation is also given in the Conclusions section.
文摘The results of studies of radiation chemical transformations of Balakhani bituminous oil of Azerbaijan are adduced. The IR (infrared) spectra of initial and irradiated samples of tar fractions of bituminous oil are compared. The kinetics of radiation chemical yields of gas products at the irradiation of bituminous oil and its tar fraction have been investigated. Irradiation is conducted in the gamma-ray source of isotope 60Co at the dose rate of P = 0.27 Gy/s and absorbed doses D = 5-163 kGy. It is found that in comparison with oil faction, tar fraction of bituminous oil has a high resistance to radiation.
文摘Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts.
文摘We studied the esterification of free fatty acids (FFA) in tung oil with methanol by using activated carbon treated with sulfuric acid as a catalyst, and investigated the effect of different temperatures, methanol/oil mole ratio and catalyst amount on the conversion of FFA. Results show that the optimal reaction condition is when the reaction time is 2 h, the mass fraction of the catalyst to total material is 5%, the molar ratio of menthol to FFA is 15 : 1, and the reaction temperature is 368.15 K. We also investigated the kinetics of estefification at various temperatures. Results indicate that the rate-control step could be attributed to the surface reaction, and within the range of the experimental conditions, the as-calculated kinetics formula can depict the esterification processes well.