The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities betwe...The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities between LaO1.5 and CeO2 at 1273 K were determined. Using the new experimental data together with literature information, a set of self-consistent thermodynamic parameters for the CeO2-LaO1.5 system were optimized. Combined with thermodynamic descriptions of Ce-O and La-O systems from literature, several property diagrams of Ce-La-O system were calculated and used to explain oxidation process of the Ce-La alloys. The fluorite phase is the unique oxidation products for most of the Ce-La alloys.展开更多
The thermodynamic systems and dynamic model suitable for determining the nonlinear chemical fingerprints of samples were analyzed.The results indicated that the damp nonlinear chemical reactions in close systems away ...The thermodynamic systems and dynamic model suitable for determining the nonlinear chemical fingerprints of samples were analyzed.The results indicated that the damp nonlinear chemical reactions in close systems away from the equilibrium and open systems without the complementarity of the dissipation substances have important significance for the throng characterization and whole content analysis of chemical components in samples.Various factors influencing on nonlinear chemical fingerprint,such as reactant species and their concentrations,electrode types,temperature,stir rate,the sort,dosage and granularity of the sample,etc.were amply researched by a nonlinear chemistry reaction,namely,damp B-Z oscillation which used acetone and glucose as the main dissipative substances.In addition,the quantitative information on the whole of chemical components in samples and the traits and applications of the fingerprint were investigated.The method and its important conditions for determining nonlinear chemistry fingerprint used in distinguishing and evaluating complex samples were successfully put forward.展开更多
基金Project (51171069) supported by the National Natural Science Foundation of ChinaProject (S2011010004094) supported by Natural Science Foundation of Guangdong Province, ChinaProject support by the Special Talents of Higher Education Office of Guangdong Province ,China
文摘The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities between LaO1.5 and CeO2 at 1273 K were determined. Using the new experimental data together with literature information, a set of self-consistent thermodynamic parameters for the CeO2-LaO1.5 system were optimized. Combined with thermodynamic descriptions of Ce-O and La-O systems from literature, several property diagrams of Ce-La-O system were calculated and used to explain oxidation process of the Ce-La alloys. The fluorite phase is the unique oxidation products for most of the Ce-La alloys.
基金supported by the National Key Technologies R & DProgram (2009GJD20033)the International Scientific and Technological Cooperation Project (2007DFA40680) from the Ministry of Scienceand Technology of China
文摘The thermodynamic systems and dynamic model suitable for determining the nonlinear chemical fingerprints of samples were analyzed.The results indicated that the damp nonlinear chemical reactions in close systems away from the equilibrium and open systems without the complementarity of the dissipation substances have important significance for the throng characterization and whole content analysis of chemical components in samples.Various factors influencing on nonlinear chemical fingerprint,such as reactant species and their concentrations,electrode types,temperature,stir rate,the sort,dosage and granularity of the sample,etc.were amply researched by a nonlinear chemistry reaction,namely,damp B-Z oscillation which used acetone and glucose as the main dissipative substances.In addition,the quantitative information on the whole of chemical components in samples and the traits and applications of the fingerprint were investigated.The method and its important conditions for determining nonlinear chemistry fingerprint used in distinguishing and evaluating complex samples were successfully put forward.