When species in the solution undergo multiple chemical reactions, the solution may be treated as a solution of all species actually present or as a hypothetical solution composed of elemental species. Based on the fu...When species in the solution undergo multiple chemical reactions, the solution may be treated as a solution of all species actually present or as a hypothetical solution composed of elemental species. Based on the fundamental thermodynamic principle, the relationships of mole numbers, molar fractions, thermodynamic properties, partial molar properties, potential and fugacity between the hypothetical solution of elemental species and the equilibrated solution of actual species were derived. The hypothetical elemental solution provides a way of reducing the dimensionality of problem, simplifying the analysis and visualizing the phase behavior.展开更多
The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the m...The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.展开更多
The chemism of the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen has been determined based on the thermodynamic analysis in the Cu2S-CaCl2-O2 system as well as characterization of...The chemism of the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen has been determined based on the thermodynamic analysis in the Cu2S-CaCl2-O2 system as well as characterization of used raw materials and obtained products. The influence of temperature (from 473 to 773 K), time (from 2 to 120 min), oxygen flow (from 20 to 100 L/h) and calcium chloride quantity (from 5 to 40%) on the chlorination degree has been investigated. Kinetic analysis and the activation energy values of 20.89 kJ/mol showed that the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen is diffusion controlled.展开更多
The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are pre...The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.展开更多
Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling ...Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification between ethylene glycol and adipic acid was accomplished efficiently and rapidly. A bench BRDT with the height of 2 m was applied for the esteriflcation process of l^oly (ethylene adlpate) (P'EA). In the continuous operation, Hn- ear oligomers were discharged from the bottom of the column, while water passed a few column trays and a pack- ing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for devel- oping and optimizing this process.展开更多
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal...A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.展开更多
In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by un...In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by underdamped step responses due to the special topological configuration and the intricate interplay between the reaction operation and the separation operation involved.The under-dampness can be substantially alleviated through the tight inventory control of bottom reboiler and this presents beneficial effects to process dynamics and operation.Two totally reboiled reactive distillation columns,separating,respectively,a hypothetical synthesis reaction from reactants A and B to product C,and a real decomposition reaction from 1,4-butanediol to tetrahydrofuran and water,are employed to demonstrate these uncommon behaviors.The results obtained give full support to the above qualitative interpretation.Despite the strong influences of reaction kinetics and thermodynamic properties of the reacting mixtures,the totally reboiled reactive distillation columns are generally considered to present such unique behaviors and require tight inventory control of bottom reboiler to facilitate their control system development.展开更多
Water-soluble gelatin-PbS bionanocomposites (BNCs) were synthesized via a facile one-pot chemical reaction method at pH 7.40. The samples were characterized by transmission electron microscopy (TEM), X-ray diffrac...Water-soluble gelatin-PbS bionanocomposites (BNCs) were synthesized via a facile one-pot chemical reaction method at pH 7.40. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis absorption spectra (UV-vis), Fourier transform infrared spectra (FT-IR) and circular dichroism (CD). FT-IR data were used to envis- age the binding of PbS particles with oxygen atoms of carbonyl groups of gelatin molecule. The possible integration mechanism between gelatin and PbS was discussed in detail. The effect of Pb2+ and PbS on the conformations of gelatin has also been analyzed by means of UV-vis, CD and FT-IR spectra, resulting in less c^-helix content and more open structures ([3-sheet, r-turn, or expanded). A new formula to calculate the association constant was proposed according to the relationship between the absorbance of gelatin-PbS BNCs and the free concentration of PbS, and apparent association constants K (298/303/308 K: 3.11/2.00/1.60 × 10^6 tool/L) at three different temperatures were calculated based on this formula. Thermodynamic parameters such as AG^θ, △Hθ and △S^θ were also determined. The results of the thermodynamic investigations indicated that the reaction was spontaneous (AG^θ 〈 0), and enthalpy-driven (△H^8 〈 0).展开更多
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemica...In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.展开更多
Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of...Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29976035) and the Natural Science Foundation of Zhejiang and Fujian Province.
文摘When species in the solution undergo multiple chemical reactions, the solution may be treated as a solution of all species actually present or as a hypothetical solution composed of elemental species. Based on the fundamental thermodynamic principle, the relationships of mole numbers, molar fractions, thermodynamic properties, partial molar properties, potential and fugacity between the hypothetical solution of elemental species and the equilibrated solution of actual species were derived. The hypothetical elemental solution provides a way of reducing the dimensionality of problem, simplifying the analysis and visualizing the phase behavior.
基金Supported by the National Natural Science Foundation of China (No.40172047) and National Major Fundamental Research & Development Project(No.G19990433)
文摘The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.
文摘The chemism of the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen has been determined based on the thermodynamic analysis in the Cu2S-CaCl2-O2 system as well as characterization of used raw materials and obtained products. The influence of temperature (from 473 to 773 K), time (from 2 to 120 min), oxygen flow (from 20 to 100 L/h) and calcium chloride quantity (from 5 to 40%) on the chlorination degree has been investigated. Kinetic analysis and the activation energy values of 20.89 kJ/mol showed that the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen is diffusion controlled.
文摘The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.
基金Supported by the National Natural Science Foundation of China (21176070).
文摘Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification between ethylene glycol and adipic acid was accomplished efficiently and rapidly. A bench BRDT with the height of 2 m was applied for the esteriflcation process of l^oly (ethylene adlpate) (P'EA). In the continuous operation, Hn- ear oligomers were discharged from the bottom of the column, while water passed a few column trays and a pack- ing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for devel- oping and optimizing this process.
文摘A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.
基金Supported by The National Natural Science Foundation of China(21076015,21376018,and 21576014)The Fundamental Research Funds for the Central Universities(ZY1503)
文摘In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by underdamped step responses due to the special topological configuration and the intricate interplay between the reaction operation and the separation operation involved.The under-dampness can be substantially alleviated through the tight inventory control of bottom reboiler and this presents beneficial effects to process dynamics and operation.Two totally reboiled reactive distillation columns,separating,respectively,a hypothetical synthesis reaction from reactants A and B to product C,and a real decomposition reaction from 1,4-butanediol to tetrahydrofuran and water,are employed to demonstrate these uncommon behaviors.The results obtained give full support to the above qualitative interpretation.Despite the strong influences of reaction kinetics and thermodynamic properties of the reacting mixtures,the totally reboiled reactive distillation columns are generally considered to present such unique behaviors and require tight inventory control of bottom reboiler to facilitate their control system development.
基金supported by the National Natural Science Foundation of China(21067001)Natural Science Foundation of Guangxi Province(0991083)Innovation Project of Guangxi University for Nationalities(gxun-chx2012091)
文摘Water-soluble gelatin-PbS bionanocomposites (BNCs) were synthesized via a facile one-pot chemical reaction method at pH 7.40. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis absorption spectra (UV-vis), Fourier transform infrared spectra (FT-IR) and circular dichroism (CD). FT-IR data were used to envis- age the binding of PbS particles with oxygen atoms of carbonyl groups of gelatin molecule. The possible integration mechanism between gelatin and PbS was discussed in detail. The effect of Pb2+ and PbS on the conformations of gelatin has also been analyzed by means of UV-vis, CD and FT-IR spectra, resulting in less c^-helix content and more open structures ([3-sheet, r-turn, or expanded). A new formula to calculate the association constant was proposed according to the relationship between the absorbance of gelatin-PbS BNCs and the free concentration of PbS, and apparent association constants K (298/303/308 K: 3.11/2.00/1.60 × 10^6 tool/L) at three different temperatures were calculated based on this formula. Thermodynamic parameters such as AG^θ, △Hθ and △S^θ were also determined. The results of the thermodynamic investigations indicated that the reaction was spontaneous (AG^θ 〈 0), and enthalpy-driven (△H^8 〈 0).
基金supported by the National Natural Science Foundation of China(Grant No.11572227)Shenzhen Municipal Government through the Fundamental Research Project(Grant No.JCYJ20170307151049286)
文摘In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
基金supported by the National Natural Science Foundation of China(U21A20284)Science and Technology Foundation of Guizhou Province(QKHZC20202Y037)+4 种基金the Science and Technology Innovation Program of Hunan Province(2020RC40052019RS1004)Innovation Mover Program of Central South University(2020CX007)National Research Foundation of Korea(NRF-2017R1A2B3004383)the China Scholarship Council(CSC)for the financial support(202006370306)。
文摘Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.