A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
Syngas conversion to fuels and chemicals is one of the most challenging subjects in the field of C1 chemistry. It is considered as an attractive alternative non-petroleum-based production route. The direct synthesis o...Syngas conversion to fuels and chemicals is one of the most challenging subjects in the field of C1 chemistry. It is considered as an attractive alternative non-petroleum-based production route. The direct synthesis of olefins and alcohols as high value-added chemicals from syngas has drawn particular attention due to its process simplicity, low energy consumption and clean utilization of carbon resource, which conforms to the principles of green carbon science. This review describes the recent advances for the direct production of lower olefins and higher alcohols via syngas conversion. Recent progress in the development of new catalyst systems for enhanced catalytic performance is highlighted. We also give recommendations regarding major challenges for further research in syngas conversion to various chemicals.展开更多
To meet the rising demand of graphene in electronics and optoelectronics, developing an efficient synthesis strategy for effective control of the layer thickness is highly necessary. Herein, we report the synthesis of...To meet the rising demand of graphene in electronics and optoelectronics, developing an efficient synthesis strategy for effective control of the layer thickness is highly necessary. Herein, we report the synthesis of strictly single- layer graphene on the foil of an early transition metal, tungsten (W), via a simple chemical vapor deposition route. The cracking of hydrocarbons is facilitated by the catalytically active metal surface of W, while the subsequent two-dimensional growth is mediated by the carbide-forming ability within the underlying bulk, leading to the formation of uniform monolayer graphene. The as-grown graphene layers can be transferred onto target substrates rapidly through the recently developed electrochemical method, which also allows for reuse of the substrates at least five times without introducing quality deteriora- tion. Moreover, considering the refractory nature of W foils, a complementary component of nickel is added, by means of which the growth temperature of graphene can be significantly reduced. In brief, a highly-efficient and low-cost synthesis route has been developed for the growth of graphene towards large-area uniformity, single-layer thickness and high crystalline quality.展开更多
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.
基金supported by the National Natural Science Foundation of China(91545112,21573271,21403278)Shanghai Municipal Science and Technology Commission,China(15DZ1170500)the Chinese Academy of Sciences(QYZDB-SSW-SLH035)
文摘Syngas conversion to fuels and chemicals is one of the most challenging subjects in the field of C1 chemistry. It is considered as an attractive alternative non-petroleum-based production route. The direct synthesis of olefins and alcohols as high value-added chemicals from syngas has drawn particular attention due to its process simplicity, low energy consumption and clean utilization of carbon resource, which conforms to the principles of green carbon science. This review describes the recent advances for the direct production of lower olefins and higher alcohols via syngas conversion. Recent progress in the development of new catalyst systems for enhanced catalytic performance is highlighted. We also give recommendations regarding major challenges for further research in syngas conversion to various chemicals.
文摘To meet the rising demand of graphene in electronics and optoelectronics, developing an efficient synthesis strategy for effective control of the layer thickness is highly necessary. Herein, we report the synthesis of strictly single- layer graphene on the foil of an early transition metal, tungsten (W), via a simple chemical vapor deposition route. The cracking of hydrocarbons is facilitated by the catalytically active metal surface of W, while the subsequent two-dimensional growth is mediated by the carbide-forming ability within the underlying bulk, leading to the formation of uniform monolayer graphene. The as-grown graphene layers can be transferred onto target substrates rapidly through the recently developed electrochemical method, which also allows for reuse of the substrates at least five times without introducing quality deteriora- tion. Moreover, considering the refractory nature of W foils, a complementary component of nickel is added, by means of which the growth temperature of graphene can be significantly reduced. In brief, a highly-efficient and low-cost synthesis route has been developed for the growth of graphene towards large-area uniformity, single-layer thickness and high crystalline quality.