Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined...Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.展开更多
The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical re...The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical reference which can evaluate the jack-up's drilling ability, design the cantilever structure and instruct a jack-up manager to make the operations safe. The intent of this paper is to explore the interrelationships between the cantilever position, drilling floor and the loads including wind force, the stand set-back weight etc., through analyzing the structure and load characteristics of the x-type cantilever and the simplified mechanics model with the restriction of the maximum moment capacity of the cantilever single side beam. Referring to several typical position designs load values, the cantilever allowable load nephogram is obtained by using the suitable interpolation method. The paper gives a method for cantilever allowable load design, which is proved reliable and effective by the calculation example.展开更多
Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the ...Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the navigation test of the self-propelled model, the complex environment including various port facilities, navigation facilities, and the ships nearby must be considered carefully, because in this dense environment the impact of sea waves and winds on the model is particularly significant. In order to improve the security of the self-propelled model, this paper introduces the Q learning based on reinforcement learning combined with chaotic ideas for the model's collision avoidance, in order to improve the reliability of the local path planning. Simulation and sea test results show that this algorithm is a better solution for collision avoidance of the self navigation model under the interference of sea winds and waves with good adaptability.展开更多
Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon m...Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.展开更多
This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic ...This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme.In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space,two particle collision times will be used in the current high-order gas-kinetic scheme(GKS).Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes,the current method is based on a high-order multidimensional gas evolution model,where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation.The high-order flux function becomes a unification of the upwind and central difference schemes.The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme.Especially,for a compact method,the use of a high-order local evolution solution in both space and time may become even more important,because a short stencil and local low order dynamic evolution model,i.e.,the Riemann solution,are contradictory,where valid mechanism for the update of additional degrees of freedom becomes limited.展开更多
Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, w...Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, we study how to modulate the asymmetric degree of the electron angular distribution by using a semi-classical simplified tunneling model. It is found that the asymmetric structure is easily affected by three parameters: the ionization potential, the laser ellipticity,and the laser wavelength. However, the laser intensity has little effect on the asymmetric structure. To explain these phenomena we have derived an analytical formula, which clearly demonstrates the relationship between the asymmetric degree and these parameters. Moreover, we find that in elliptically polarized laser field only those electrons that are released in a certain narrow window of initial field phase are greatly effected by the Coulomb potential and play the key role in the formation of asymmetric structure. This study provides some reference values in the development of attoclock technique, which can be used to probe the tunneling process.展开更多
基金Supported by the National Natural Science Foundation of China(20776042) the National High Technology Research and Development Program of China(2007AA04Z164)+3 种基金 the Doctoral Fund of Ministry of Education of China(20090074110005) the Program for New Century Excellent Talents in University(NCET-09-0346) the"Shu Guang"Project(095G29) Shanghai Leading Academic Discipline Project(B504)
文摘Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.
文摘The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical reference which can evaluate the jack-up's drilling ability, design the cantilever structure and instruct a jack-up manager to make the operations safe. The intent of this paper is to explore the interrelationships between the cantilever position, drilling floor and the loads including wind force, the stand set-back weight etc., through analyzing the structure and load characteristics of the x-type cantilever and the simplified mechanics model with the restriction of the maximum moment capacity of the cantilever single side beam. Referring to several typical position designs load values, the cantilever allowable load nephogram is obtained by using the suitable interpolation method. The paper gives a method for cantilever allowable load design, which is proved reliable and effective by the calculation example.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No.61100005.
文摘Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the navigation test of the self-propelled model, the complex environment including various port facilities, navigation facilities, and the ships nearby must be considered carefully, because in this dense environment the impact of sea waves and winds on the model is particularly significant. In order to improve the security of the self-propelled model, this paper introduces the Q learning based on reinforcement learning combined with chaotic ideas for the model's collision avoidance, in order to improve the reliability of the local path planning. Simulation and sea test results show that this algorithm is a better solution for collision avoidance of the self navigation model under the interference of sea winds and waves with good adaptability.
文摘Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.
基金supported by Hong Kong Research Grant Council(Grant No.621011)HKUST research fund(Grant No.SRFI11SC05)
文摘This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme.In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space,two particle collision times will be used in the current high-order gas-kinetic scheme(GKS).Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes,the current method is based on a high-order multidimensional gas evolution model,where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation.The high-order flux function becomes a unification of the upwind and central difference schemes.The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme.Especially,for a compact method,the use of a high-order local evolution solution in both space and time may become even more important,because a short stencil and local low order dynamic evolution model,i.e.,the Riemann solution,are contradictory,where valid mechanism for the update of additional degrees of freedom becomes limited.
基金Supported by the National Natural Science Foundation of China under Grant No.11374133the Ph.D.Foundation of Tangshan Normal University under Grant No.2015A06+1 种基金the Science and Technology Project of Hebei Province under Grant No.16274522the Education Project of Hebei Province under Grant No.QN2015328
文摘Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, we study how to modulate the asymmetric degree of the electron angular distribution by using a semi-classical simplified tunneling model. It is found that the asymmetric structure is easily affected by three parameters: the ionization potential, the laser ellipticity,and the laser wavelength. However, the laser intensity has little effect on the asymmetric structure. To explain these phenomena we have derived an analytical formula, which clearly demonstrates the relationship between the asymmetric degree and these parameters. Moreover, we find that in elliptically polarized laser field only those electrons that are released in a certain narrow window of initial field phase are greatly effected by the Coulomb potential and play the key role in the formation of asymmetric structure. This study provides some reference values in the development of attoclock technique, which can be used to probe the tunneling process.