In less than 10 years since its inception, RNA interference (RNAi) has had extraordinary impact on biomedical science. RNAi has been demonstrated to influence numerous biological and disease pathways. Development an...In less than 10 years since its inception, RNA interference (RNAi) has had extraordinary impact on biomedical science. RNAi has been demonstrated to influence numerous biological and disease pathways. Development and adoption of RNAi technologies have been prolific ranging from basic loss-of-function tools, genome-wide screening libraries to pharmaceutical target validation and therapeutic development. However, understanding of the molecular mechanisms of RNAi is far from complete. The purpose of this brief review is to highlight key achievements in elucidating the bio- chemical mechanisms of the RNA-induced silencing complex and to outline major challenges for the field.展开更多
A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recover...A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.展开更多
The sugar cane bagasse was treated with chemical treatment including sodium hydroxide and silane. The characterization of the modified bagasse was achieved with Fourier transform infrared spectroscopy (FTIR), and sc...The sugar cane bagasse was treated with chemical treatment including sodium hydroxide and silane. The characterization of the modified bagasse was achieved with Fourier transform infrared spectroscopy (FTIR), and scaning electron microscopy (SEM). Results showed that the presence Si-CH3 group occurred on bagasse surface after chemical modification. In addition, the roughness of the modified bagasse was higher than that of unmodified bagasse due to chemical modification from sodium hydroxide. Two polymer composite types, namely (1) natural rubber NR/sugar cane bagasse and (2) NR/plaster via two-roll mill method, were prepared. The optimum cure (t90) and torque of the NR/plaster increased with increasing plaster loading in composite. In case of NR/bagasse, the tgo of this sample decreased as a function of sugar cane bagasse while torque of this sample increased with increasing sugar cane bagasse. The modulus of the resulting composite increased with increasing both plaster and sugar cane bagasse, but the tensile strength and elongation at break of the composite decreased as a function of both piaster and sugar cane bagasse in composite.展开更多
Comparative studies of Japanese mythology have developed since the 1920s above all through eftbrts of Japanese ethnologists. They have paid attention to the possible ethno-cultural complexes that brought mythological ...Comparative studies of Japanese mythology have developed since the 1920s above all through eftbrts of Japanese ethnologists. They have paid attention to the possible ethno-cultural complexes that brought mythological motifs into the archipelago. In the present paper the theories set forth by Nobuhiro Matsumoto, Akihide Mishina, and Masao Oka are examined in terms of retrospect. The result shows that they shared the view that at least three different complexes, based in ancient Yamato, Izumo, and Kyushu respectively, contributed to the formation of Japanese mythology compiled in the 8th century CE (Common Era). Their assumptions were synthesized by Taryo Obayashi in 1961, the hypothesis which has survived until today. In future we should cooperate with other disciplines and address the formation process of Japanese mythology.展开更多
The polyaniline (PAn)/poly(vinyl alcohol) (PVA) conductive composite film is synthesized with perchloric acid (HClO 4) as the dopant and oxidant in reaction system by electrochemical polymerization. The result shows t...The polyaniline (PAn)/poly(vinyl alcohol) (PVA) conductive composite film is synthesized with perchloric acid (HClO 4) as the dopant and oxidant in reaction system by electrochemical polymerization. The result shows that this composite film has very high conductive properties, the maximum value of conductivity reaches 0.173 S/cm at the concentration 0.75 mol. The influences of HClO 4 on the conductivity of the composite film are investigated.In addition,the electrode reaction progress is discussed with the result that obtained from SEM and FTIR analyzing.展开更多
Objective cytomorphometric differential diagnostic criteria of breast, thyroid, stomach, and cervical cancer were obtained with the method of atomic force microscopy. Statistically significant increased ratio of the n...Objective cytomorphometric differential diagnostic criteria of breast, thyroid, stomach, and cervical cancer were obtained with the method of atomic force microscopy. Statistically significant increased ratio of the nucleus and the cytoplasm height and the nucleolus and the nucleus height is characteristically for cancer cells compared to normal cells. AFM method allows determining the viral changes in squamous cells by detecting the perinuclear area of enlightenment. AFM allows objectifying immunocytochemistry data by quantifying the height of immune complexes. Possibilities of quantitative immunocytochemistry with AFM are shown in the model of Her2/neu oncoprotein expression in breast cancer and thyroglobulin in papillary thyroid cancer.展开更多
The authors have prepared supramolecular systems as artificial metalloproteins composed of several chiral salen-type Mn(II) and Co(II) complexes in a HSA (human serum albumin) matrix. The docking was discussed b...The authors have prepared supramolecular systems as artificial metalloproteins composed of several chiral salen-type Mn(II) and Co(II) complexes in a HSA (human serum albumin) matrix. The docking was discussed by UV-vis spectral changes and a ligand-protein docking simulation program. After linearly polarized UV light irradiation, that anisotropy of molecular orientation of the complexes increased was confirmed by polarized IR spectra. The authors have observed that the electrochemical behavior of the aligned complexes incorporating diphenyl groups in HSA can be tuned without UV radiation damage of HSA higher structures.展开更多
The results of monitoring the radiation-chemical situation in the middle reach of the Yenisei River located in the nearest zone of the influence of the Mining and Chemical Combine of Rosatom have been described in the...The results of monitoring the radiation-chemical situation in the middle reach of the Yenisei River located in the nearest zone of the influence of the Mining and Chemical Combine of Rosatom have been described in the paper. Using different physico-chemical methods, it has been found that uranium and tritium content in the water exceeds the background values of the flood plain of the River Yenisei. It has been shown that a wide range of radionuclides of different genesis flows into the waters of the Yenisei River. It has been demonstrated that radionuclides are transported by the water flow in the form of molecular solution or with suspended matter. In this case, the suspended matter consists of pelitic finely dispersed mineral particles, plant and organic detritus and living biological objects (for example, worms). It has been shown that the main contribution to radionuclide and metal accumulation is made by humic substances covering the panicles of the suspended matter and actively participating in the formation of complexes with radionuclides and heavy metals. As a result of this work, the artificial radionuclide inflow into the ecosystem of the River Yenisei has been evidenced.展开更多
Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.T...Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.This study aimed to assess how drought modifed the effect of AMF on plant resistance to high calcium-saline stress.A pot experiment was performed to examine how AMF inoculation affects the growth,photosynthetic activity,nutrient uptake and carbon(C),nitrogen(N)and phosphorus(P)stoichiometric ratio(C:N:P)of maize under high calcium stress and contrasting water conditions.The results showed that high calcium stress signifcantly reduced mycorrhizal colonization,biomass accumulation,C assimilation rate and C:N stoichiometric ratio in plant tissues.Besides,the adverse effects of calcium stress on photosynthesis were exacerbated under drought.AMF inoculation profoundly alleviated such reductions under drought and saline stress.However,it barely affected maize performance when subjected to calcium stress under well-watered conditions.Moreover,watering changed AMF impact on nutrient allocation in plant tissues.Under well-watered conditions,AMF stimulated P accumulation in roots and plant growth,but did not induce leaf P accumulation proportional to C and N,resulting in increased leaf C:P and N:P ratios under high calcium stress.In contrast,AMF decreased N content and the N:P ratio in leaves under drought.Overall,AMF inoculation improved maize resistance to calcium-salt stress through enhanced photosynthesis and modulation of nutrient stoichiometry,particularly under water defcit conditions.These results highlighted the regulatory role of AMF in carbon assimilation and nutrient homeostasis under compound stresses,and provide signifcant guidance on the improvement of crop yield in saline and arid regions.展开更多
Composites of Na_(0.44)Mn O_2, Na_(0.7)Mn O_(2.05), and Na_(0.91) Mn O_2 were synthesized by facile solid-state reaction, ball milling, and annealing methods. Two different composites of identical overall composition ...Composites of Na_(0.44)Mn O_2, Na_(0.7)Mn O_(2.05), and Na_(0.91) Mn O_2 were synthesized by facile solid-state reaction, ball milling, and annealing methods. Two different composites of identical overall composition but drastically different morphologies and microstructures were synthesized. A composite of a hierarchical porous microstructure with primary and secondary particles(i.e., a "meatball-like" microstructure) achieved an excellent stable capacity of 126 m A h g^(-1) after 100 cycles. The rate capability of the composite could be dramatically enhanced by another round of high-energy ball milling and reannealing; subsequently, a composite that was made up of irregular rods was obtained, for which the capacity was improved by more than 230% to achieve ~53 m A h g^(-1) at a particularly high discharge rate of 50 C. This study demonstrated the feasibility of tailoring the electrochemical performance of electrode materials by simply changing their microstructures via facile ball milling and heat treatments, which can be particularly useful for optimizing composite electrodes for sodium-ion batteries.展开更多
The interaction between BSA and epicatechin was studied using fluorescence quenching titrations combined with trilinear decomposition method and excitation-emission matrix(EEM)fluorescence.The resolved spectra were hi...The interaction between BSA and epicatechin was studied using fluorescence quenching titrations combined with trilinear decomposition method and excitation-emission matrix(EEM)fluorescence.The resolved spectra were highly similar with the actual ones which indicated that the resolved results were reliable.The relevant parameters of the binding process were obtained by quantifying each substance in the complicated mixtures in situ.The quenching was static quenching,epicatechin had a weak interaction with BSA and the binding site was one.The total concentration and the free concentration of quenchers had different effect on the system.The results demonstrated that the method exploited in this article is a useful tool to investigate complicated interactions,avoiding complicated pretreatment and simplify experimental procedure.展开更多
The electrochemiluminescence(ECL) behavior of N-(4-aminobutyl)-N-ethylisoluminol(ABEI)-functionalized graphene composite(ABEI-GC) modified on an indium tin oxide(ITO) electrode was studied. ABEI-GC exhibited excellent...The electrochemiluminescence(ECL) behavior of N-(4-aminobutyl)-N-ethylisoluminol(ABEI)-functionalized graphene composite(ABEI-GC) modified on an indium tin oxide(ITO) electrode was studied. ABEI-GC exhibited excellent ECL activity. On this basis, a label-free ECL immunosensor was developed for the sensitive detection of human immunoglobulin G(h Ig G) by using ABEI-GC as the ECL nano-interface via a layer-by-layer assembly technique. ABEI-GC was first assembled onto an ITO electrode. Positively charged chitosan was then electrostatically adsorbed to the modified electrode. Finally, negatively charged antibody-coated gold nanoparticles were attached to the surface to form the ECL immunosensor. In the presence of h Ig G, h Ig G was captured by its antibody. In addition, an ECL signal was detected in the presence of H2O2 when a double potential was applied. The ECL immunosensor for the determination of h Ig G showed a linear range of 1.0×10-13–1.0×10-8 g/mL with a detection limit of 5.0×10-14 g/m L. This immunosensor has high sensitivity, wide linearity and good reproducibility. The superior sensitivity of the proposed ECL immunoassay mainly derives from the incorporation of ABEI-GC, which not only improves the ECL intensity, response speed, and stability, but also provides a large specific surface for high levels of protein loading. This work reveals that ABEI-GC is good nano-interface for the construction of ECL biosensors. Our strategy is promising for protein detection and may open up a new avenue for ultrasensitive label-free immunoassays.展开更多
There has been increasing interest in devel- oping micro/nanostructured aluminum-based materials for sustainable, dependable and high-efficiency electro- chemical energy storage. This review chiefly discusses the alum...There has been increasing interest in devel- oping micro/nanostructured aluminum-based materials for sustainable, dependable and high-efficiency electro- chemical energy storage. This review chiefly discusses the aluminum-based electrode materials mainly including A1203, AIF3, AIPO4, AI(OH)3, as well as the composites (carbons, silicons, metals and transition metal oxides) for lithium-ion batteries, the development of aluminum-ion batteries, and nickel-metal hydride alkaline secondary batteries, which summarizes the methodologies, related charge-storage mechanisms, the relationship between nanos- tructures and electrochemical properties found in recent years, latest research achievements and their potential ap- plications. In addition, we raise the relevant challenges in recently developed electrode materials and put forward new ideas for further development of micro/nanostructured aluminum-based materials in advanced battery systems.展开更多
文摘In less than 10 years since its inception, RNA interference (RNAi) has had extraordinary impact on biomedical science. RNAi has been demonstrated to influence numerous biological and disease pathways. Development and adoption of RNAi technologies have been prolific ranging from basic loss-of-function tools, genome-wide screening libraries to pharmaceutical target validation and therapeutic development. However, understanding of the molecular mechanisms of RNAi is far from complete. The purpose of this brief review is to highlight key achievements in elucidating the bio- chemical mechanisms of the RNA-induced silencing complex and to outline major challenges for the field.
基金Projects 2006BAB02A03 supported by the National Key Technology Research and Development ProgramProjects 2006BA02B05 by the 11th Five Year Key Program for Science and Technology Development of China
文摘A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.
文摘The sugar cane bagasse was treated with chemical treatment including sodium hydroxide and silane. The characterization of the modified bagasse was achieved with Fourier transform infrared spectroscopy (FTIR), and scaning electron microscopy (SEM). Results showed that the presence Si-CH3 group occurred on bagasse surface after chemical modification. In addition, the roughness of the modified bagasse was higher than that of unmodified bagasse due to chemical modification from sodium hydroxide. Two polymer composite types, namely (1) natural rubber NR/sugar cane bagasse and (2) NR/plaster via two-roll mill method, were prepared. The optimum cure (t90) and torque of the NR/plaster increased with increasing plaster loading in composite. In case of NR/bagasse, the tgo of this sample decreased as a function of sugar cane bagasse while torque of this sample increased with increasing sugar cane bagasse. The modulus of the resulting composite increased with increasing both plaster and sugar cane bagasse, but the tensile strength and elongation at break of the composite decreased as a function of both piaster and sugar cane bagasse in composite.
文摘Comparative studies of Japanese mythology have developed since the 1920s above all through eftbrts of Japanese ethnologists. They have paid attention to the possible ethno-cultural complexes that brought mythological motifs into the archipelago. In the present paper the theories set forth by Nobuhiro Matsumoto, Akihide Mishina, and Masao Oka are examined in terms of retrospect. The result shows that they shared the view that at least three different complexes, based in ancient Yamato, Izumo, and Kyushu respectively, contributed to the formation of Japanese mythology compiled in the 8th century CE (Common Era). Their assumptions were synthesized by Taryo Obayashi in 1961, the hypothesis which has survived until today. In future we should cooperate with other disciplines and address the formation process of Japanese mythology.
文摘The polyaniline (PAn)/poly(vinyl alcohol) (PVA) conductive composite film is synthesized with perchloric acid (HClO 4) as the dopant and oxidant in reaction system by electrochemical polymerization. The result shows that this composite film has very high conductive properties, the maximum value of conductivity reaches 0.173 S/cm at the concentration 0.75 mol. The influences of HClO 4 on the conductivity of the composite film are investigated.In addition,the electrode reaction progress is discussed with the result that obtained from SEM and FTIR analyzing.
文摘Objective cytomorphometric differential diagnostic criteria of breast, thyroid, stomach, and cervical cancer were obtained with the method of atomic force microscopy. Statistically significant increased ratio of the nucleus and the cytoplasm height and the nucleolus and the nucleus height is characteristically for cancer cells compared to normal cells. AFM method allows determining the viral changes in squamous cells by detecting the perinuclear area of enlightenment. AFM allows objectifying immunocytochemistry data by quantifying the height of immune complexes. Possibilities of quantitative immunocytochemistry with AFM are shown in the model of Her2/neu oncoprotein expression in breast cancer and thyroglobulin in papillary thyroid cancer.
文摘The authors have prepared supramolecular systems as artificial metalloproteins composed of several chiral salen-type Mn(II) and Co(II) complexes in a HSA (human serum albumin) matrix. The docking was discussed by UV-vis spectral changes and a ligand-protein docking simulation program. After linearly polarized UV light irradiation, that anisotropy of molecular orientation of the complexes increased was confirmed by polarized IR spectra. The authors have observed that the electrochemical behavior of the aligned complexes incorporating diphenyl groups in HSA can be tuned without UV radiation damage of HSA higher structures.
文摘The results of monitoring the radiation-chemical situation in the middle reach of the Yenisei River located in the nearest zone of the influence of the Mining and Chemical Combine of Rosatom have been described in the paper. Using different physico-chemical methods, it has been found that uranium and tritium content in the water exceeds the background values of the flood plain of the River Yenisei. It has been shown that a wide range of radionuclides of different genesis flows into the waters of the Yenisei River. It has been demonstrated that radionuclides are transported by the water flow in the form of molecular solution or with suspended matter. In this case, the suspended matter consists of pelitic finely dispersed mineral particles, plant and organic detritus and living biological objects (for example, worms). It has been shown that the main contribution to radionuclide and metal accumulation is made by humic substances covering the panicles of the suspended matter and actively participating in the formation of complexes with radionuclides and heavy metals. As a result of this work, the artificial radionuclide inflow into the ecosystem of the River Yenisei has been evidenced.
基金supported by China Postdoctoral Science Foundation(2021M703137)Chongqing Postdoctoral Science Foundation(cstc2021jcyj-bshX0195)+2 种基金Postdoctoral Foundation of Jiangsu Province of China(1501014B)Education Department of Sichuan Province(17ZB0211),the Ecological Security and Protection Key Laboratory of Sichuan Province(07144812)the Scientifc Research Foundation of Chongqing University of Technology(2021ZDZ022).
文摘Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.This study aimed to assess how drought modifed the effect of AMF on plant resistance to high calcium-saline stress.A pot experiment was performed to examine how AMF inoculation affects the growth,photosynthetic activity,nutrient uptake and carbon(C),nitrogen(N)and phosphorus(P)stoichiometric ratio(C:N:P)of maize under high calcium stress and contrasting water conditions.The results showed that high calcium stress signifcantly reduced mycorrhizal colonization,biomass accumulation,C assimilation rate and C:N stoichiometric ratio in plant tissues.Besides,the adverse effects of calcium stress on photosynthesis were exacerbated under drought.AMF inoculation profoundly alleviated such reductions under drought and saline stress.However,it barely affected maize performance when subjected to calcium stress under well-watered conditions.Moreover,watering changed AMF impact on nutrient allocation in plant tissues.Under well-watered conditions,AMF stimulated P accumulation in roots and plant growth,but did not induce leaf P accumulation proportional to C and N,resulting in increased leaf C:P and N:P ratios under high calcium stress.In contrast,AMF decreased N content and the N:P ratio in leaves under drought.Overall,AMF inoculation improved maize resistance to calcium-salt stress through enhanced photosynthesis and modulation of nutrient stoichiometry,particularly under water defcit conditions.These results highlighted the regulatory role of AMF in carbon assimilation and nutrient homeostasis under compound stresses,and provide signifcant guidance on the improvement of crop yield in saline and arid regions.
基金supported by the U.S.NSF(Grant No.DMR-1320615)subsequently an NSSEFF fellowship(Grant No.N00014-15-1-0030)
文摘Composites of Na_(0.44)Mn O_2, Na_(0.7)Mn O_(2.05), and Na_(0.91) Mn O_2 were synthesized by facile solid-state reaction, ball milling, and annealing methods. Two different composites of identical overall composition but drastically different morphologies and microstructures were synthesized. A composite of a hierarchical porous microstructure with primary and secondary particles(i.e., a "meatball-like" microstructure) achieved an excellent stable capacity of 126 m A h g^(-1) after 100 cycles. The rate capability of the composite could be dramatically enhanced by another round of high-energy ball milling and reannealing; subsequently, a composite that was made up of irregular rods was obtained, for which the capacity was improved by more than 230% to achieve ~53 m A h g^(-1) at a particularly high discharge rate of 50 C. This study demonstrated the feasibility of tailoring the electrochemical performance of electrode materials by simply changing their microstructures via facile ball milling and heat treatments, which can be particularly useful for optimizing composite electrodes for sodium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(21175041)the National Basic Research Program of China(2012CB910602)
文摘The interaction between BSA and epicatechin was studied using fluorescence quenching titrations combined with trilinear decomposition method and excitation-emission matrix(EEM)fluorescence.The resolved spectra were highly similar with the actual ones which indicated that the resolved results were reliable.The relevant parameters of the binding process were obtained by quantifying each substance in the complicated mixtures in situ.The quenching was static quenching,epicatechin had a weak interaction with BSA and the binding site was one.The total concentration and the free concentration of quenchers had different effect on the system.The results demonstrated that the method exploited in this article is a useful tool to investigate complicated interactions,avoiding complicated pretreatment and simplify experimental procedure.
基金supported by the National Natural Science Foundation of China(20625517,21075115,21173201)the Merieux Research Grants,the Fundamental Research Funds for the Central Universities(WK2060190007)the Opening Fund of the State Key Laboratory of Electroanalytical Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(SKLEAC201408)
文摘The electrochemiluminescence(ECL) behavior of N-(4-aminobutyl)-N-ethylisoluminol(ABEI)-functionalized graphene composite(ABEI-GC) modified on an indium tin oxide(ITO) electrode was studied. ABEI-GC exhibited excellent ECL activity. On this basis, a label-free ECL immunosensor was developed for the sensitive detection of human immunoglobulin G(h Ig G) by using ABEI-GC as the ECL nano-interface via a layer-by-layer assembly technique. ABEI-GC was first assembled onto an ITO electrode. Positively charged chitosan was then electrostatically adsorbed to the modified electrode. Finally, negatively charged antibody-coated gold nanoparticles were attached to the surface to form the ECL immunosensor. In the presence of h Ig G, h Ig G was captured by its antibody. In addition, an ECL signal was detected in the presence of H2O2 when a double potential was applied. The ECL immunosensor for the determination of h Ig G showed a linear range of 1.0×10-13–1.0×10-8 g/mL with a detection limit of 5.0×10-14 g/m L. This immunosensor has high sensitivity, wide linearity and good reproducibility. The superior sensitivity of the proposed ECL immunoassay mainly derives from the incorporation of ABEI-GC, which not only improves the ECL intensity, response speed, and stability, but also provides a large specific surface for high levels of protein loading. This work reveals that ABEI-GC is good nano-interface for the construction of ECL biosensors. Our strategy is promising for protein detection and may open up a new avenue for ultrasensitive label-free immunoassays.
基金supported by the Program for New Century Excellent Talents of the University in China (NCET-13-0645)the National Natural Science Foundation of China (21201010, 21671170 and 21673203)+5 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (164200510018)the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (14IRTSTHN004)the Six Talent Plan (2015-XCL030)Qinglan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Undergraduate Scientific Research Innovation Projects in Jiangsu province (201611117047Y)
文摘There has been increasing interest in devel- oping micro/nanostructured aluminum-based materials for sustainable, dependable and high-efficiency electro- chemical energy storage. This review chiefly discusses the aluminum-based electrode materials mainly including A1203, AIF3, AIPO4, AI(OH)3, as well as the composites (carbons, silicons, metals and transition metal oxides) for lithium-ion batteries, the development of aluminum-ion batteries, and nickel-metal hydride alkaline secondary batteries, which summarizes the methodologies, related charge-storage mechanisms, the relationship between nanos- tructures and electrochemical properties found in recent years, latest research achievements and their potential ap- plications. In addition, we raise the relevant challenges in recently developed electrode materials and put forward new ideas for further development of micro/nanostructured aluminum-based materials in advanced battery systems.