Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fractur...Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage (250 min); in the middle solution stage (250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner (LSW) model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.展开更多
TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of...TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode.展开更多
A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substitutin...A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.展开更多
The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS ...The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.展开更多
The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry cur...The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper.展开更多
Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performanc...Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.展开更多
The coconut palm tree leaf sheath fibers were analyzed by FTIR spectral analysis, Chemical, X-ray and thermo gravimetric methods to assess their suitability as reinforcements in the preparation of green composites. Th...The coconut palm tree leaf sheath fibers were analyzed by FTIR spectral analysis, Chemical, X-ray and thermo gravimetric methods to assess their suitability as reinforcements in the preparation of green composites. The morphology of the untreated and alkali treated fibers was studied by scanning electron microscopic method. The FTIR and chemical analyses indicated lowering of hemi-cellulose content by alkali treatment of the fibers. The X-ray diffraction revealed an increase in crystallinity of the fibers on alkali treatment. The thermal stability of the fibers was found to increase slightly by alkali treatment. The tensile properties of these fibers increased on alkali treatment. The mechanical and other physical properties indicated that these fibers were suitable as reinforcements for making the green composites.展开更多
The objective of this study was to examine the phytochemical components, antioxidant activity and antibacterial property of ethyl acetate extract of the stem bark of garlic tree (Scorodocarpus borneensis). The dried...The objective of this study was to examine the phytochemical components, antioxidant activity and antibacterial property of ethyl acetate extract of the stem bark of garlic tree (Scorodocarpus borneensis). The dried stem bark of S. borneensis were collected and homogenized after drying at room temperature (32℃) for 30 d. The stem barks were extracted by macerated method using 95% ethanol and then fractionated with ethyl acetate. The dried ethyl acetate extract was subjected to phytoehemical screening to determine the presence of bioactive components using gas chromatography-mass spectrometry (GC-MS). Antioxidant activity of the extract in vitro was examined by 2,2-diphenyl-l-picryl-hydrazyl (DPPH) radical scavenging assay. The antibacterial activity against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli was performed by disc diffusion assay. GCMS results revealed the presence of 14 different phytocompounds, viz, tetratriacontyl trifluoroacetate (41.61%), 2-pentanone (13.65%), oxacyclotetradecane-2,11-done (7.87%), cinnamic acid (7.53%), 10-octadecanoic acid (6.50%), 1,2-benzeno dicarboxylix acid (4.99%), octadecanoic acid (4.51%), hexadecanoic acid (4.16%), beta tumerone (3.01%), 9-octadecenoic acid (1.70%), tricosanol (1.38%), hexadecano-phenone (1.36%), 1-nonadecanol (0.93%) and n-nonadecanol (0.82%). In vitro antioxidant activity (IC50) was found at 55.524 ppm as high powerful. The results of agar diffusion method showed that the ethyl acetate extracts had an antibacterial activity of 6.687 ± 0.800 mm againts S. aureus at 10% (w/v) and 7.500 ± 0.735 mm against E. coli at 10% (w/v) as moderate category. These findings suggest that S. borneensis stem bark is a valuable sources of bioactive compounds with promising as antioxidant and antibacterial sources.展开更多
Entosis, a ceU-in-ceU process, has been implicated in the formation of aneuploidy associated with an aberrant cell division control. Microtubule plus-end-tracking protein TI P150 facilitates the loading of MCAK onto t...Entosis, a ceU-in-ceU process, has been implicated in the formation of aneuploidy associated with an aberrant cell division control. Microtubule plus-end-tracking protein TI P150 facilitates the loading of MCAK onto the microtubule plus ends and orchestrates micro- tubule plus-end dynamics during cell division. Here we show that TIP150 cooperates with MCAK to govern entosis via a regulatory cir- cuitry that involves Aurora A-mediated phosphorylation of MCAK. Our biochemical analyses show that MCAK forms an intra-molecular association, which is essential for TIP150 binding. Interestingly, Aurora A-mediated phosphorylation of MCAK modulates its intra-mo- lecular association, which perturbs the MCAK-TI P150 interaction in vitro and inhibits entosis in vivo. To probe if MCAK-TIP150 inter- action regulates microtubule plasticity to affect the mechanical properties of ceUs during entosis, we used an optical trap to measure the mechanical rigidity of live MCF7 ceils. We find that the MCAK cooperates with TIP150 to promote microtubule dynamics and modulate the mechanical rigidity of the cells during entosis. Our results show that a dynamic interaction of MCAK-TI P150 orchestrated by Aurora A-mediated phosphorylation governs entosis via regulating microtubule plus-end dynamics and cell rigidity. These data reveal a previously unknown mechanism of Aurora A regulation in the control of microtubule plasticity during ceU-in-ceU pro- cesses.展开更多
The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficien...The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is still expensive for scaled-up production. In the present work we report an efficient strategy for total chemical synthesis of Ub-AMC through ligation of peptide hydrazides. Three peptide segments are assembled via N-to-C sequential ligation and the resulting product is converted to Ub-AMC via TCEP-mediated desulfurization. The synthetic Ub-AMC is shown to have expected biological functions throug展开更多
In this study, phosphorus(P) sorption of thirteen light-weight aggregates(LWAs) from USA was compared during batch equilibrium experiments in order to identify those materials which had the highest P sorption capacity...In this study, phosphorus(P) sorption of thirteen light-weight aggregates(LWAs) from USA was compared during batch equilibrium experiments in order to identify those materials which had the highest P sorption capacity for further study. Seven different levels of sorption activity were observed, which were broadly grouped into three categories—high performing, middle performing, and low performing aggregates. Chemical analysis of Ca, Al, Fe, and Mg was used to describe the differences between LWAs. There was a significant correlation between cation(especially Al, Ca, Fe, and Mg) content and P sorbed. Langmuir isotherms were used to describe P sorption maximum and binding affinity for four of the top five performing LWAs, Universal, Stalite "D", Stalite "Mix", and TXI.The fifth aggregate, Lehigh, exhibited more complex sorption, and was better described by the Freundlich isotherm. Universal had a mean P sorption at the highest concentration of 824 mg kg-1, well above its calculated sorption maximum(702 mg kg-1), and also had the highest binding affinity(1.1 L mg-1). This experiment suggests that the top performing LWA(Universal) may perform poorly in column and field studies due to observed precipitates, which could degrade constructed wetland performance. Other LWAs may exhibit superior field performance due to their high calculated sorption maxima. In general, these results highlight the importance of batch experiments as a first step in identifying materials suitable for column and field experiments.展开更多
One polythiophene derivative PT3T and two low band gap copolymers,PBTT-T3T and PBTT,with different ratios of 5,6-dini-trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-cataly...One polythiophene derivative PT3T and two low band gap copolymers,PBTT-T3T and PBTT,with different ratios of 5,6-dini-trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-catalyzed Stille-coupling polymerizations.Thermal stability,X-ray diffraction analyses,UV-vis absorption spectra,photoluminescence spectra and electrochemical properties of the copolymers were investigated.The band gap estimated from UV-vis-NIR spectra of the copolymers films varied from 1.39 to 1.94 eV.Among these copolymers,the films of PBTT-T3T and PBTT,which contain the 5,6-dinitrobenzothiadiazole unit,cover a broad wavelength range in the visible and near-infrared region from 400 to 1000 nm with the maximal peak absorption around 700 nm,which is exactly matched with the maximum in the photon flux of the sun.展开更多
文摘Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage (250 min); in the middle solution stage (250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner (LSW) model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.
基金ACKNOWLEDGMENTS This work was supported by the Science Foundation of Chongqing Science and Technology Committee (No.CSTS2009BB4047), and Innovative Talent Training Project, the Third Stage of "211 Project" of Chongqing University (No.S-09109).
文摘TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode.
文摘A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801)the National Natural Science Foundation of China(No.51176033)
文摘The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.
基金Project(200501045) supported by Innovation Fund of Guangdong Province of China
文摘The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper.
基金supported by the Key Project of Natural Science Fund of Shandong Province (ZR2011BZ008)the Marine Renewable Energy Special Fund Project from the State Oceanic Administration PRC (GHME2011GD04)+2 种基金the Scientific and Technology Development Plan Project of Shandong Province,China (2008GG10007003)the Key Laboratory of Submarine Geoscience and Exploring Technology of the Ministry of Education,Ocean University of China (Grant No. 2008-01)the Key Laboratory of Marine Environment & Ecology,Ministry of Education (Grant No. 2008010)
文摘Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.
基金supported by University Grants Com-mission,India,Major Research Project(No:33-397/2007(SRF))
文摘The coconut palm tree leaf sheath fibers were analyzed by FTIR spectral analysis, Chemical, X-ray and thermo gravimetric methods to assess their suitability as reinforcements in the preparation of green composites. The morphology of the untreated and alkali treated fibers was studied by scanning electron microscopic method. The FTIR and chemical analyses indicated lowering of hemi-cellulose content by alkali treatment of the fibers. The X-ray diffraction revealed an increase in crystallinity of the fibers on alkali treatment. The thermal stability of the fibers was found to increase slightly by alkali treatment. The tensile properties of these fibers increased on alkali treatment. The mechanical and other physical properties indicated that these fibers were suitable as reinforcements for making the green composites.
文摘The objective of this study was to examine the phytochemical components, antioxidant activity and antibacterial property of ethyl acetate extract of the stem bark of garlic tree (Scorodocarpus borneensis). The dried stem bark of S. borneensis were collected and homogenized after drying at room temperature (32℃) for 30 d. The stem barks were extracted by macerated method using 95% ethanol and then fractionated with ethyl acetate. The dried ethyl acetate extract was subjected to phytoehemical screening to determine the presence of bioactive components using gas chromatography-mass spectrometry (GC-MS). Antioxidant activity of the extract in vitro was examined by 2,2-diphenyl-l-picryl-hydrazyl (DPPH) radical scavenging assay. The antibacterial activity against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli was performed by disc diffusion assay. GCMS results revealed the presence of 14 different phytocompounds, viz, tetratriacontyl trifluoroacetate (41.61%), 2-pentanone (13.65%), oxacyclotetradecane-2,11-done (7.87%), cinnamic acid (7.53%), 10-octadecanoic acid (6.50%), 1,2-benzeno dicarboxylix acid (4.99%), octadecanoic acid (4.51%), hexadecanoic acid (4.16%), beta tumerone (3.01%), 9-octadecenoic acid (1.70%), tricosanol (1.38%), hexadecano-phenone (1.36%), 1-nonadecanol (0.93%) and n-nonadecanol (0.82%). In vitro antioxidant activity (IC50) was found at 55.524 ppm as high powerful. The results of agar diffusion method showed that the ethyl acetate extracts had an antibacterial activity of 6.687 ± 0.800 mm againts S. aureus at 10% (w/v) and 7.500 ± 0.735 mm against E. coli at 10% (w/v) as moderate category. These findings suggest that S. borneensis stem bark is a valuable sources of bioactive compounds with promising as antioxidant and antibacterial sources.
文摘Entosis, a ceU-in-ceU process, has been implicated in the formation of aneuploidy associated with an aberrant cell division control. Microtubule plus-end-tracking protein TI P150 facilitates the loading of MCAK onto the microtubule plus ends and orchestrates micro- tubule plus-end dynamics during cell division. Here we show that TIP150 cooperates with MCAK to govern entosis via a regulatory cir- cuitry that involves Aurora A-mediated phosphorylation of MCAK. Our biochemical analyses show that MCAK forms an intra-molecular association, which is essential for TIP150 binding. Interestingly, Aurora A-mediated phosphorylation of MCAK modulates its intra-mo- lecular association, which perturbs the MCAK-TI P150 interaction in vitro and inhibits entosis in vivo. To probe if MCAK-TIP150 inter- action regulates microtubule plasticity to affect the mechanical properties of ceUs during entosis, we used an optical trap to measure the mechanical rigidity of live MCF7 ceils. We find that the MCAK cooperates with TIP150 to promote microtubule dynamics and modulate the mechanical rigidity of the cells during entosis. Our results show that a dynamic interaction of MCAK-TI P150 orchestrated by Aurora A-mediated phosphorylation governs entosis via regulating microtubule plus-end dynamics and cell rigidity. These data reveal a previously unknown mechanism of Aurora A regulation in the control of microtubule plasticity during ceU-in-ceU pro- cesses.
基金National Basic Research Program of China (973 program, 2013CB932800)the National Natural Science Foundation of China (NSFC, 31100524 to M.Z., 31170817 for C.T., and 20972148 to L.L.)
文摘The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is still expensive for scaled-up production. In the present work we report an efficient strategy for total chemical synthesis of Ub-AMC through ligation of peptide hydrazides. Three peptide segments are assembled via N-to-C sequential ligation and the resulting product is converted to Ub-AMC via TCEP-mediated desulfurization. The synthetic Ub-AMC is shown to have expected biological functions throug
基金Supported by the Soil Characterization Laboratory,University of Masachusetts,Amherst,MA,USA
文摘In this study, phosphorus(P) sorption of thirteen light-weight aggregates(LWAs) from USA was compared during batch equilibrium experiments in order to identify those materials which had the highest P sorption capacity for further study. Seven different levels of sorption activity were observed, which were broadly grouped into three categories—high performing, middle performing, and low performing aggregates. Chemical analysis of Ca, Al, Fe, and Mg was used to describe the differences between LWAs. There was a significant correlation between cation(especially Al, Ca, Fe, and Mg) content and P sorbed. Langmuir isotherms were used to describe P sorption maximum and binding affinity for four of the top five performing LWAs, Universal, Stalite "D", Stalite "Mix", and TXI.The fifth aggregate, Lehigh, exhibited more complex sorption, and was better described by the Freundlich isotherm. Universal had a mean P sorption at the highest concentration of 824 mg kg-1, well above its calculated sorption maximum(702 mg kg-1), and also had the highest binding affinity(1.1 L mg-1). This experiment suggests that the top performing LWA(Universal) may perform poorly in column and field studies due to observed precipitates, which could degrade constructed wetland performance. Other LWAs may exhibit superior field performance due to their high calculated sorption maxima. In general, these results highlight the importance of batch experiments as a first step in identifying materials suitable for column and field experiments.
基金support from the National Natural Science Foundation of China (50933003 & 50903044)MOST of China (2009AA032304)
文摘One polythiophene derivative PT3T and two low band gap copolymers,PBTT-T3T and PBTT,with different ratios of 5,6-dini-trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-catalyzed Stille-coupling polymerizations.Thermal stability,X-ray diffraction analyses,UV-vis absorption spectra,photoluminescence spectra and electrochemical properties of the copolymers were investigated.The band gap estimated from UV-vis-NIR spectra of the copolymers films varied from 1.39 to 1.94 eV.Among these copolymers,the films of PBTT-T3T and PBTT,which contain the 5,6-dinitrobenzothiadiazole unit,cover a broad wavelength range in the visible and near-infrared region from 400 to 1000 nm with the maximal peak absorption around 700 nm,which is exactly matched with the maximum in the photon flux of the sun.