为提高La-Mg-Ni基储氢合金La_(0.73)Ce_(0.18)Mg_(0.09)Ni_(3.20)Al_(0.21)Mn_(0.10)Co_(0.60)的电化学性能,将制备的石墨烯添加到储氢合金中。经XRD分析可知,处理前后合金的相结构没有变化。添加质量分数为1%、2%、5%石墨烯的合金电极...为提高La-Mg-Ni基储氢合金La_(0.73)Ce_(0.18)Mg_(0.09)Ni_(3.20)Al_(0.21)Mn_(0.10)Co_(0.60)的电化学性能,将制备的石墨烯添加到储氢合金中。经XRD分析可知,处理前后合金的相结构没有变化。添加质量分数为1%、2%、5%石墨烯的合金电极与未添加石墨烯电极相比,最大放电容量略有下降,但50次循环后的放电容量保持率从63%分别提高到75%、78%和73%。添加2%石墨烯电极和未添加石墨烯电极相比,900 m A/g放电电流密度下的高倍率放电容量保持率从79.8%增加到83.9%,交换电流密度I0从54 m A/g提高到281 m A/g,极限电流密度IL从512 m A/g提高到1 537 m A/g。加入石墨烯后,电极的抗腐蚀性能也明显增强。展开更多
改性阳极可以显著提高海底微生物燃料电池的性能。利用2-羟基-1,4-萘醌(HNQ)和氧化石墨烯(GO)制备复合改性阳极,并研究其电化学性能。结果表明,GO/HNQ改性阳极的交换电流密度是空白电极的6.58倍,达到290.8 m A/m2。GO/HNQ改性使BMFC的...改性阳极可以显著提高海底微生物燃料电池的性能。利用2-羟基-1,4-萘醌(HNQ)和氧化石墨烯(GO)制备复合改性阳极,并研究其电化学性能。结果表明,GO/HNQ改性阳极的交换电流密度是空白电极的6.58倍,达到290.8 m A/m2。GO/HNQ改性使BMFC的最大功率密度达到346 m W/m2,是空白组的3.46倍。紫外检测结果表明,GO特征峰呈现显著红移,这与GO和HNQ之间的π-π堆积有关。最后提出改性阳极表面新的电子转移机理。展开更多
文摘为提高La-Mg-Ni基储氢合金La_(0.73)Ce_(0.18)Mg_(0.09)Ni_(3.20)Al_(0.21)Mn_(0.10)Co_(0.60)的电化学性能,将制备的石墨烯添加到储氢合金中。经XRD分析可知,处理前后合金的相结构没有变化。添加质量分数为1%、2%、5%石墨烯的合金电极与未添加石墨烯电极相比,最大放电容量略有下降,但50次循环后的放电容量保持率从63%分别提高到75%、78%和73%。添加2%石墨烯电极和未添加石墨烯电极相比,900 m A/g放电电流密度下的高倍率放电容量保持率从79.8%增加到83.9%,交换电流密度I0从54 m A/g提高到281 m A/g,极限电流密度IL从512 m A/g提高到1 537 m A/g。加入石墨烯后,电极的抗腐蚀性能也明显增强。
文摘改性阳极可以显著提高海底微生物燃料电池的性能。利用2-羟基-1,4-萘醌(HNQ)和氧化石墨烯(GO)制备复合改性阳极,并研究其电化学性能。结果表明,GO/HNQ改性阳极的交换电流密度是空白电极的6.58倍,达到290.8 m A/m2。GO/HNQ改性使BMFC的最大功率密度达到346 m W/m2,是空白组的3.46倍。紫外检测结果表明,GO特征峰呈现显著红移,这与GO和HNQ之间的π-π堆积有关。最后提出改性阳极表面新的电子转移机理。