Ethoxylation and propoxylation reactions are performed in the industry to produce mainly non-ionic surfactants and ethylene oxide(EO)–propylene oxide(PO) copolymers.Both the reactions occur in gas–liquid reactors by...Ethoxylation and propoxylation reactions are performed in the industry to produce mainly non-ionic surfactants and ethylene oxide(EO)–propylene oxide(PO) copolymers.Both the reactions occur in gas–liquid reactors by feeding gaseous EO,PO or both into the reactor containing a solution of an alkaline catalyst(KOH or Na OH).Non-ionic surfactants are produced by using liquid starters like fatty alcohols,fatty acids or alkyl-phenols,while when the scope is to prepare EO–PO copolymers the starter can be a mono-or multi-functional alcohol of low molecular weight.Both reactions are strongly exothermic,and EO and PO,in some conditions,can give place to runaway and also to explosive side reactions.Therefore,the choice of a suitable reactor is a key factor for operating in safe conditions.A correct reactor design requires:(i) the knowledge of the kinetic laws governing the rates of the occurring reactions;(ii) the role of mass and heat transfer in affecting the reaction rate;(iii) the solubility of EO and PO in the reacting mixture with the non-ideality of the reacting solutions considered;(iv) the density of the reacting mixture.All these aspects have been studied by our research group for different starters of industrial interest,and the data collected by using semibatch well stirred laboratory reactors have been employed for the simulation of industrial reactors,in particular Gas–Liquid Spray Tower Loop Reactors.展开更多
A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous a...A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.展开更多
Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared ...Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.展开更多
The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl...The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl radical formation in the controlled decomposition of the oxidant agent, and the concentration and toxicity of hydrogen peroxide. The objective of this study was to develop a mathematical model able to predict the kinetics of the inactivation Escherichia coli and total coliforms cells present in treated domestic sewage through catalytic peroxidation. The catalyst used was iron oxide supported on mineral coal (called CP), and the effects of the operational conditions, including hydrogen peroxide concentration and dosage of catalyst, were evaluated. The results showed that the disinfection kinetics of the treated domestic sewage is dependent on the concentrations of hydrogen peroxide and catalyst dosage. The kinetic model was shown to be able to predict the behavior of the inactivation kinetics of the bacterium Escherichia coli ATCC-25922 when different concentrations of hydrogen peroxide (75 and 100 mg·L^-1) were used, regardless of the catalyst dosage.展开更多
Chemically modified halloysite proved to be an effective adsorbent for the pesticide chlorpropham and 3-chloroaniline from an aqueous solution. Adsorption experiments were conducted using such procedures as the time-d...Chemically modified halloysite proved to be an effective adsorbent for the pesticide chlorpropham and 3-chloroaniline from an aqueous solution. Adsorption experiments were conducted using such procedures as the time-dependent (kinetic) procedure and the concentration dependent (isotherm) procedure. Results indicate that the adsorption process is related to the kind of the studied compound. The equilibrium data are well suited to a Freundlich isotherm in the case of both investigated compounds. Adsorption kinetics of chlorpropham and 3-chloroaniline on acid-treated halloysite was successfully described by pseudo-second order kinetic model and the model of Weber and Morris. From the present study, we suggest that the adsorption of chlorpropham and 3-chloroaniline on the modified halloysite is a rather complex process involving two steps: external mass transfer and intra-particle diffusion.展开更多
Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural prope...Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural properties and chemical activity. In order to detail the effect of each functional group, we correlated the activity with the surface density of each group, and found that the carboxyl groups play a pivotal role in two important catalytic reactions, namely the electrochemical oxygen reduction reaction (ORR) and agar conversion to 5-hydroxymethylfurfural (HMF). During the processes, the hydrophilic surface provides a strong affinity for reaction substrates while the improved porosity allows the efficient diffusion of reactants and products. Furthermore, the activity of functionalized CNTs for agar conversion remained almost unchanged during nine cycles of reaction. This work highlights a strategy for improving the activity of CNTs for electrochemical ORR and agar conversion reactions, as well a promising application of carboxyl-rich CNTs as a solid acid catalyst to produce high-purity HMF--an important chemical intermediate.展开更多
Developing high-efficient non-platinum (Pt) catalysts for oxygen reduction reaction (ORR) is the key to reduce the usage of Pt and the palladium (Pd)-based cata- lyst is a promising alternative. Here, we present...Developing high-efficient non-platinum (Pt) catalysts for oxygen reduction reaction (ORR) is the key to reduce the usage of Pt and the palladium (Pd)-based cata- lyst is a promising alternative. Here, we presented a facile approach to core/shell FePd/Pd nanoparticle (NP) catalyst with the FePd core in chemically ordered face-centered tetragonal (fct-) structure and the shell in controlled thickness from 0.32 to 0.81 nm via the thermal annealing of FePd NP followed by an electro-anodization process. With a 0.71 nm-thick Pd shell, the fct-FePd/Pd shows a robust catalytic activity and durability for ORR with the mass activities at 0.85 and 0.90 V reaching 453 and 96.7 A/mgpd, respectively, which are about 3.0 and 2.1 times higher than those of commercial Pt in alkaline media. This work presents a new class of non-Pt catalyst with superior performance to Pt for ORR catalysis, and the strategy demonstrated here can be extended to design highefficient catalysts for other chemical reactions.展开更多
Surface tailoring of Pt-based nanocatalysts is an effective pathway to promote their electrocatalytic performance and multifunctionality.Here,we report two kinds of one-dimensional(1D)ultrafine PtCu nanowires(smooth s...Surface tailoring of Pt-based nanocatalysts is an effective pathway to promote their electrocatalytic performance and multifunctionality.Here,we report two kinds of one-dimensional(1D)ultrafine PtCu nanowires(smooth surface&rugged surface)synthesized via a wet chemical method and their distinct catalytic performances in electro-oxidation of alcohols.The alloyed PtCu nanowires having rough surfaces with atomic steps exhibit superior catalytic activity toward multiple electrochemical reactions compared with the smooth counterpart.Density functional theory simulations show the excellent reactivity of rugged PtCu na-nowires and attribute it to the surface synergetic Pt-Cu site which accounts for the promotion of water dissociation and the dehydrogenation of the carboxyl intermediate.The current study provides an insight into reasonable design of alloy nanocatalysts in energy-related electrocatalytic systems.展开更多
Bioavailability is a critical factor for assessing the environmental risk of organic pollutants in soil. In this study, extractions with 3 different solvents, including 2 aqueous solutions, calcium chloride(CaCl_2) an...Bioavailability is a critical factor for assessing the environmental risk of organic pollutants in soil. In this study, extractions with 3 different solvents, including 2 aqueous solutions, calcium chloride(CaCl_2) and a phosphate buffer solution(PBS), and a mixture of aqueous solution and organic solvent, a PBS-methanol(8:2,volume/volume) mixture(PBS-M), were performed to assess the bioavailability of chlorimuron-ethyl in soil in comparison to a battery of toxicity tests in wheat seedlings. The results indicated that the peroxidase(POD) activity in wheat leaves after 7 d of exposure was one of the sensitive biomarkers of chlorimuron-ethyl in soil.The extractability of chlorimuron-ethyl by all the 3 solvents decreased with exposure time, and the rate of decrease of the PBS-M extraction between 1 and 7 d of exposure was substantially higher than those of the aqueous solution extractions. Chlorimuron-ethyl gradually changed from a water-soluble form into a soil organic matter(SOM)-bound form in the soil. The PBS extraction correlated best with the POD activity in the leaves after 7 d of exposure.展开更多
文摘Ethoxylation and propoxylation reactions are performed in the industry to produce mainly non-ionic surfactants and ethylene oxide(EO)–propylene oxide(PO) copolymers.Both the reactions occur in gas–liquid reactors by feeding gaseous EO,PO or both into the reactor containing a solution of an alkaline catalyst(KOH or Na OH).Non-ionic surfactants are produced by using liquid starters like fatty alcohols,fatty acids or alkyl-phenols,while when the scope is to prepare EO–PO copolymers the starter can be a mono-or multi-functional alcohol of low molecular weight.Both reactions are strongly exothermic,and EO and PO,in some conditions,can give place to runaway and also to explosive side reactions.Therefore,the choice of a suitable reactor is a key factor for operating in safe conditions.A correct reactor design requires:(i) the knowledge of the kinetic laws governing the rates of the occurring reactions;(ii) the role of mass and heat transfer in affecting the reaction rate;(iii) the solubility of EO and PO in the reacting mixture with the non-ideality of the reacting solutions considered;(iv) the density of the reacting mixture.All these aspects have been studied by our research group for different starters of industrial interest,and the data collected by using semibatch well stirred laboratory reactors have been employed for the simulation of industrial reactors,in particular Gas–Liquid Spray Tower Loop Reactors.
文摘A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.
基金Supported by the National Natural Science Foundation of China(21276076)the Program for New Century Excellent Talents in University(NCET-13-0801)the Fundamental Research Funds for the Central Universities(222201313011)
文摘Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.
文摘The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl radical formation in the controlled decomposition of the oxidant agent, and the concentration and toxicity of hydrogen peroxide. The objective of this study was to develop a mathematical model able to predict the kinetics of the inactivation Escherichia coli and total coliforms cells present in treated domestic sewage through catalytic peroxidation. The catalyst used was iron oxide supported on mineral coal (called CP), and the effects of the operational conditions, including hydrogen peroxide concentration and dosage of catalyst, were evaluated. The results showed that the disinfection kinetics of the treated domestic sewage is dependent on the concentrations of hydrogen peroxide and catalyst dosage. The kinetic model was shown to be able to predict the behavior of the inactivation kinetics of the bacterium Escherichia coli ATCC-25922 when different concentrations of hydrogen peroxide (75 and 100 mg·L^-1) were used, regardless of the catalyst dosage.
文摘Chemically modified halloysite proved to be an effective adsorbent for the pesticide chlorpropham and 3-chloroaniline from an aqueous solution. Adsorption experiments were conducted using such procedures as the time-dependent (kinetic) procedure and the concentration dependent (isotherm) procedure. Results indicate that the adsorption process is related to the kind of the studied compound. The equilibrium data are well suited to a Freundlich isotherm in the case of both investigated compounds. Adsorption kinetics of chlorpropham and 3-chloroaniline on acid-treated halloysite was successfully described by pseudo-second order kinetic model and the model of Weber and Morris. From the present study, we suggest that the adsorption of chlorpropham and 3-chloroaniline on the modified halloysite is a rather complex process involving two steps: external mass transfer and intra-particle diffusion.
文摘Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural properties and chemical activity. In order to detail the effect of each functional group, we correlated the activity with the surface density of each group, and found that the carboxyl groups play a pivotal role in two important catalytic reactions, namely the electrochemical oxygen reduction reaction (ORR) and agar conversion to 5-hydroxymethylfurfural (HMF). During the processes, the hydrophilic surface provides a strong affinity for reaction substrates while the improved porosity allows the efficient diffusion of reactants and products. Furthermore, the activity of functionalized CNTs for agar conversion remained almost unchanged during nine cycles of reaction. This work highlights a strategy for improving the activity of CNTs for electrochemical ORR and agar conversion reactions, as well a promising application of carboxyl-rich CNTs as a solid acid catalyst to produce high-purity HMF--an important chemical intermediate.
基金Acknowledgments This work was supported by the Key Projects of Applied Technology Development in Chongqing (cstc2014yykfB900027, the Science and Technology Project of Chongqing Municipal Education Commission (KJI500601) and the Natural Science Foundation of Chongqing Science and Technology Commission (cstc2015jcyjA20007).
文摘Developing high-efficient non-platinum (Pt) catalysts for oxygen reduction reaction (ORR) is the key to reduce the usage of Pt and the palladium (Pd)-based cata- lyst is a promising alternative. Here, we presented a facile approach to core/shell FePd/Pd nanoparticle (NP) catalyst with the FePd core in chemically ordered face-centered tetragonal (fct-) structure and the shell in controlled thickness from 0.32 to 0.81 nm via the thermal annealing of FePd NP followed by an electro-anodization process. With a 0.71 nm-thick Pd shell, the fct-FePd/Pd shows a robust catalytic activity and durability for ORR with the mass activities at 0.85 and 0.90 V reaching 453 and 96.7 A/mgpd, respectively, which are about 3.0 and 2.1 times higher than those of commercial Pt in alkaline media. This work presents a new class of non-Pt catalyst with superior performance to Pt for ORR catalysis, and the strategy demonstrated here can be extended to design highefficient catalysts for other chemical reactions.
基金financial support from the National Natural Science Foundation of China(21571001,21631001U1532141)+2 种基金the Ministry of Education,and the Education Department of AnhuiSouthern University of Science and Technology(SUSTech),China(2020B121201002)the computational resource support from the Center for Computational Science and Engineering at SUSTech。
文摘Surface tailoring of Pt-based nanocatalysts is an effective pathway to promote their electrocatalytic performance and multifunctionality.Here,we report two kinds of one-dimensional(1D)ultrafine PtCu nanowires(smooth surface&rugged surface)synthesized via a wet chemical method and their distinct catalytic performances in electro-oxidation of alcohols.The alloyed PtCu nanowires having rough surfaces with atomic steps exhibit superior catalytic activity toward multiple electrochemical reactions compared with the smooth counterpart.Density functional theory simulations show the excellent reactivity of rugged PtCu na-nowires and attribute it to the surface synergetic Pt-Cu site which accounts for the promotion of water dissociation and the dehydrogenation of the carboxyl intermediate.The current study provides an insight into reasonable design of alloy nanocatalysts in energy-related electrocatalytic systems.
基金supported by the National Natural Science Foundation of China(Nos.41401565,41201520 and 20807046)
文摘Bioavailability is a critical factor for assessing the environmental risk of organic pollutants in soil. In this study, extractions with 3 different solvents, including 2 aqueous solutions, calcium chloride(CaCl_2) and a phosphate buffer solution(PBS), and a mixture of aqueous solution and organic solvent, a PBS-methanol(8:2,volume/volume) mixture(PBS-M), were performed to assess the bioavailability of chlorimuron-ethyl in soil in comparison to a battery of toxicity tests in wheat seedlings. The results indicated that the peroxidase(POD) activity in wheat leaves after 7 d of exposure was one of the sensitive biomarkers of chlorimuron-ethyl in soil.The extractability of chlorimuron-ethyl by all the 3 solvents decreased with exposure time, and the rate of decrease of the PBS-M extraction between 1 and 7 d of exposure was substantially higher than those of the aqueous solution extractions. Chlorimuron-ethyl gradually changed from a water-soluble form into a soil organic matter(SOM)-bound form in the soil. The PBS extraction correlated best with the POD activity in the leaves after 7 d of exposure.