Water resources are scarce in Jincheng. Huge quantities of water are pumped out in the dewatering course, and the disposal of CBM water is one of the most important problems during the extracting of CBM. Based on the ...Water resources are scarce in Jincheng. Huge quantities of water are pumped out in the dewatering course, and the disposal of CBM water is one of the most important problems during the extracting of CBM. Based on the data of CBM water production, chemical characteristics, the irrigational conditions for major crops, and China irrigation water standard, the feasibility of CBM water as irrigation water is discussed. The result shows the CBM water quality doesn't fully meet irrigation water quality standards in Jincheng, its high salinity and sodium adsorption ratio (SAR) in CBM water might affect crops growth and lead to yield loss, and can't be used as irrigation water directly, but with the treatment of the reverse osmosis (RO) to lower the salinity and SAR of CBM water, the CBM water can be used as irrigation water.展开更多
Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy s...Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.展开更多
Morelos is the fourth in area cultivated and production volume of avocado. Of the 13 municipalities where it is farmed, Ocuituco represents 43.51% and Tetela del Volain 27.53%. Despite being one of the main fruit spec...Morelos is the fourth in area cultivated and production volume of avocado. Of the 13 municipalities where it is farmed, Ocuituco represents 43.51% and Tetela del Volain 27.53%. Despite being one of the main fruit species in Morelos, no information related to the fertility of the soil where it is grown, the quality of water available for irrigation and nutritional status of this important fruit for the state. The study was conducted in the municipality of Ocuituco which identified three agro-habitats taking into account climate, landform, soil type and altitude. In each agro-habitat were carried out soil sampling to determine the physical and chemical characteristics based on the Mexican Official Standard NOM-021-SEMARNAT-2000, the chemical quality of water for irrigation as described by Richards (1954) and crop nutrient status of avocado "Hass" according to the methodology described by Maldonado (2002). The soils had different physical and chemical characteristics, as well as the nutritional status of avocado trees in the three agro-habitats. The trees had excessive concentration of CI, Cu and Zn. Indices of optimal percentage deviation expressed different nutritional requirements. The water used for irrigation was of low salinity and sodium content, so it can be used without restrictions.展开更多
he effects of greywater irrigation on four commonly used agricultural soils and models were studied. Sand, sandy loam, sandy clay and light clay soils were selected as common Iraq soils. Soil's chemical and physical ...he effects of greywater irrigation on four commonly used agricultural soils and models were studied. Sand, sandy loam, sandy clay and light clay soils were selected as common Iraq soils. Soil's chemical and physical properties under different irrigation regimes were daily measured during period extended from February 2011 to April 2012 in Baghdad city and plant growth was monitored. A lab scale models of four acrylic columns of 100 mm diameter and 750 mm height were designed and constructed in environmental hydraulic lab at Mustansiriya University and tests were run concurrently with the characterization study to assess the effect of soil depth and loading rate on treatment efficiency. Soil samples were carried out in a site that had been drained with greywater for over 14 months. Measurements of greywater and treated greywater had been achieved which contains BODs, COD, pH, EC, TDS, turbidity, CI+1, 504+2, NO3+1, Na+l, Ca+2, Mg+2, E coli and coliform.展开更多
A laboratory experiment was conducted in Soil Science Division of BRRI during 2011 aimed to determine the vertical distribution of soil chemical properties under long-term industrial waste water irrigated rice field. ...A laboratory experiment was conducted in Soil Science Division of BRRI during 2011 aimed to determine the vertical distribution of soil chemical properties under long-term industrial waste water irrigated rice field. Waste water irrigated rice field seemed to create some differences in soil pH profile. The pHW and pHKCl in all soil depth was higher with waste water irrigated rice field. The surface charge of both the soils was considerably negative. Waste water irrigated rice field developed more negative charges in soils. Irrigation with waste water increased Electrical Conductivity (EC) in rice soils profile. The organic carbon content (%) started to decrease sharply with the increase in soil depth. Organic carbon content was higher with waste water irrigated rice soils Total nitrogen (%) was high with underground water irrigated rice soils in surface but at deeper, total N was similar in both soils. Olsen P (mg/kg) was higher with underground water irrigated soil at 0-5 cm depth but at 5-100 cm soils profile, it was higher with waste water irrigated rice soils. Micronutrients (Zn, Fe, Cu and Mn) and heavy metals (Pb, Cd, Ni and Cr) in soils were increased significantly through irrigation with waste water in rice-rice cropping pattern.展开更多
文摘Water resources are scarce in Jincheng. Huge quantities of water are pumped out in the dewatering course, and the disposal of CBM water is one of the most important problems during the extracting of CBM. Based on the data of CBM water production, chemical characteristics, the irrigational conditions for major crops, and China irrigation water standard, the feasibility of CBM water as irrigation water is discussed. The result shows the CBM water quality doesn't fully meet irrigation water quality standards in Jincheng, its high salinity and sodium adsorption ratio (SAR) in CBM water might affect crops growth and lead to yield loss, and can't be used as irrigation water directly, but with the treatment of the reverse osmosis (RO) to lower the salinity and SAR of CBM water, the CBM water can be used as irrigation water.
文摘Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.
文摘Morelos is the fourth in area cultivated and production volume of avocado. Of the 13 municipalities where it is farmed, Ocuituco represents 43.51% and Tetela del Volain 27.53%. Despite being one of the main fruit species in Morelos, no information related to the fertility of the soil where it is grown, the quality of water available for irrigation and nutritional status of this important fruit for the state. The study was conducted in the municipality of Ocuituco which identified three agro-habitats taking into account climate, landform, soil type and altitude. In each agro-habitat were carried out soil sampling to determine the physical and chemical characteristics based on the Mexican Official Standard NOM-021-SEMARNAT-2000, the chemical quality of water for irrigation as described by Richards (1954) and crop nutrient status of avocado "Hass" according to the methodology described by Maldonado (2002). The soils had different physical and chemical characteristics, as well as the nutritional status of avocado trees in the three agro-habitats. The trees had excessive concentration of CI, Cu and Zn. Indices of optimal percentage deviation expressed different nutritional requirements. The water used for irrigation was of low salinity and sodium content, so it can be used without restrictions.
文摘he effects of greywater irrigation on four commonly used agricultural soils and models were studied. Sand, sandy loam, sandy clay and light clay soils were selected as common Iraq soils. Soil's chemical and physical properties under different irrigation regimes were daily measured during period extended from February 2011 to April 2012 in Baghdad city and plant growth was monitored. A lab scale models of four acrylic columns of 100 mm diameter and 750 mm height were designed and constructed in environmental hydraulic lab at Mustansiriya University and tests were run concurrently with the characterization study to assess the effect of soil depth and loading rate on treatment efficiency. Soil samples were carried out in a site that had been drained with greywater for over 14 months. Measurements of greywater and treated greywater had been achieved which contains BODs, COD, pH, EC, TDS, turbidity, CI+1, 504+2, NO3+1, Na+l, Ca+2, Mg+2, E coli and coliform.
文摘A laboratory experiment was conducted in Soil Science Division of BRRI during 2011 aimed to determine the vertical distribution of soil chemical properties under long-term industrial waste water irrigated rice field. Waste water irrigated rice field seemed to create some differences in soil pH profile. The pHW and pHKCl in all soil depth was higher with waste water irrigated rice field. The surface charge of both the soils was considerably negative. Waste water irrigated rice field developed more negative charges in soils. Irrigation with waste water increased Electrical Conductivity (EC) in rice soils profile. The organic carbon content (%) started to decrease sharply with the increase in soil depth. Organic carbon content was higher with waste water irrigated rice soils Total nitrogen (%) was high with underground water irrigated rice soils in surface but at deeper, total N was similar in both soils. Olsen P (mg/kg) was higher with underground water irrigated soil at 0-5 cm depth but at 5-100 cm soils profile, it was higher with waste water irrigated rice soils. Micronutrients (Zn, Fe, Cu and Mn) and heavy metals (Pb, Cd, Ni and Cr) in soils were increased significantly through irrigation with waste water in rice-rice cropping pattern.