Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low e...Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.展开更多
The authors have shown that the process data can be modeled on the basis of chemical thermodynamics. The authors offer general information of the equation in the presence of a magnetic field. As a result, studies have...The authors have shown that the process data can be modeled on the basis of chemical thermodynamics. The authors offer general information of the equation in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of information.展开更多
The authors have shown that the process of information and thinking can be modeled on the basis of chemical thermodynamics. The authors offer general equations to calculate the thinking of the work of judgment the L a...The authors have shown that the process of information and thinking can be modeled on the basis of chemical thermodynamics. The authors offer general equations to calculate the thinking of the work of judgment the L and of entropy solutions G in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of the process of thinking.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
In the present paper, we study effect of the long-range Coulomb interaction on the thermodynamic propertiesof graphene by renormalization group methods.Our calculations show that both the specific heat and the magneti...In the present paper, we study effect of the long-range Coulomb interaction on the thermodynamic propertiesof graphene by renormalization group methods.Our calculations show that both the specific heat and the magneticsusceptibility of the material behave differently from the Landau Fermi liquid.More precisely, we find that thesequantities are logarithmically suppressed with respect to its noninteracting counterpart when temperature is low.展开更多
Abstract: Chemistry of the human brain has two components--the basic chemistry common to all mammals and chemistry of thinking inherent to man. The authors proposed a mechanism of induction and thermodynamic features...Abstract: Chemistry of the human brain has two components--the basic chemistry common to all mammals and chemistry of thinking inherent to man. The authors proposed a mechanism of induction and thermodynamic features of the brain. The authors offered the mechanisms of the work RAM (physical) and permanent (chemical), the brain's memory, including the model of nonlocal quantum correlations.展开更多
For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound(HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expec...For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound(HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound(MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.展开更多
基金supported by the Belt and Road Initiative by Chinese Academy of Sciencesthe National Natural Science Foundation of China(21673052,11404074)
文摘Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.
文摘The authors have shown that the process data can be modeled on the basis of chemical thermodynamics. The authors offer general information of the equation in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of information.
文摘The authors have shown that the process of information and thinking can be modeled on the basis of chemical thermodynamics. The authors offer general equations to calculate the thinking of the work of judgment the L and of entropy solutions G in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of the process of thinking.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
基金Supported by the Chinese National Science Foundation under Grant No.10874003 by Ministry of Science and Technology of China under Grant No.2006CB921300
文摘In the present paper, we study effect of the long-range Coulomb interaction on the thermodynamic propertiesof graphene by renormalization group methods.Our calculations show that both the specific heat and the magneticsusceptibility of the material behave differently from the Landau Fermi liquid.More precisely, we find that thesequantities are logarithmically suppressed with respect to its noninteracting counterpart when temperature is low.
文摘Abstract: Chemistry of the human brain has two components--the basic chemistry common to all mammals and chemistry of thinking inherent to man. The authors proposed a mechanism of induction and thermodynamic features of the brain. The authors offered the mechanisms of the work RAM (physical) and permanent (chemical), the brain's memory, including the model of nonlocal quantum correlations.
基金supported by the Special Funds for Quality Supervision,Inspection and Quarantine Research in Public Interest of China(Grant No.201510068)
文摘For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound(HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound(MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.