Bamboo-structured boron nitride (BN) nanotubes with thorn-like morphology were synthe-sized by thermal chemical reaction using amorphous boron powders and NiO nanoparticles as precursors under the flow of NH3 at 110...Bamboo-structured boron nitride (BN) nanotubes with thorn-like morphology were synthe-sized by thermal chemical reaction using amorphous boron powders and NiO nanoparticles as precursors under the flow of NH3 at 1100 oC. The structural and morphological charac-teristics of BN nanotubes were investigated by X-ray diraction and transmission electron microscopy. The results showed that the thorn-like nanostructures attaching to the stems of bamboo-structured BN nanotubes were the hexagonal BN nano akes. Based on the diffu-sion of solid B and vapor B2O2, a possible growth mechanism of these novel thorn-like BN nanotubes was primarily proposed.展开更多
Reaction runaway has longtime been an issue in chemical industry as it often leads to severe accidents if not controlled and inhibited properly.Herein we have reviewed several key considerations and procedures to prev...Reaction runaway has longtime been an issue in chemical industry as it often leads to severe accidents if not controlled and inhibited properly.Herein we have reviewed several key considerations and procedures to prevent such phenomena,including inherently safer reactor design,thermal risk assessment and early warning detection of runaway,and pointed out that the basic principle underlying is necessary heat management and construction of resilient processes.For inherently safer reactor design,important factors such as heat removal,heat capacitance,flow behaviors and explosive behaviors have been investigated.The survey shows that heat exchanger(HEX) reactor and microreactor outperform traditional reactors.Meanwhile,we have looked into the effect of thermal risk ranking and safety operation region determining for thermal risk assessment,and the influence of runaway criteria and construction methods for early detection of reaction runaway as well.It shows that thermal risk assessment plays a key role on process design,and early warning detection system(EWDS) is preferable on prevention of reaction runaway.In the end,perspectives regarding inherently safer designs with the measures discussed above have been provided.展开更多
The outside serrated integral-fin tubes fabricated by rolling-plowing-extrusion processing were surface-treated through different processes of annealing in hydrogen atmosphere,electrochemical corrosion or sandblasting...The outside serrated integral-fin tubes fabricated by rolling-plowing-extrusion processing were surface-treated through different processes of annealing in hydrogen atmosphere,electrochemical corrosion or sandblasting.The purpose was to eliminate residual stress,clear secondary micro-fins and enhance heat transfer performance.By comparing the surface characteristics,it is found that the finned tubes treated by electrochemical corrosion have the most glabrous surfaces where the fins are almost perfectly reserved.Clear layer cracks can be observed on the top of the fins.These structures are effective in enhancing heat transfer performance when being applied to flow heat exchange.Therefore,the finned tubes treated by electrochemical corrosion are proper for the tubular exchanger with water coolant.The finned tubes treated by sandblasting have rougher surfaces with layer cracks and micro gaps removed.As these structures are useful to clearing adhesive feculence,the tubes are more suitable for the tubular heat exchanger with oil coolant.展开更多
Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harves...Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).展开更多
文摘Bamboo-structured boron nitride (BN) nanotubes with thorn-like morphology were synthe-sized by thermal chemical reaction using amorphous boron powders and NiO nanoparticles as precursors under the flow of NH3 at 1100 oC. The structural and morphological charac-teristics of BN nanotubes were investigated by X-ray diraction and transmission electron microscopy. The results showed that the thorn-like nanostructures attaching to the stems of bamboo-structured BN nanotubes were the hexagonal BN nano akes. Based on the diffu-sion of solid B and vapor B2O2, a possible growth mechanism of these novel thorn-like BN nanotubes was primarily proposed.
基金Supported by the National Key Research and Development Program of China(2016YFB0301701)
文摘Reaction runaway has longtime been an issue in chemical industry as it often leads to severe accidents if not controlled and inhibited properly.Herein we have reviewed several key considerations and procedures to prevent such phenomena,including inherently safer reactor design,thermal risk assessment and early warning detection of runaway,and pointed out that the basic principle underlying is necessary heat management and construction of resilient processes.For inherently safer reactor design,important factors such as heat removal,heat capacitance,flow behaviors and explosive behaviors have been investigated.The survey shows that heat exchanger(HEX) reactor and microreactor outperform traditional reactors.Meanwhile,we have looked into the effect of thermal risk ranking and safety operation region determining for thermal risk assessment,and the influence of runaway criteria and construction methods for early detection of reaction runaway as well.It shows that thermal risk assessment plays a key role on process design,and early warning detection system(EWDS) is preferable on prevention of reaction runaway.In the end,perspectives regarding inherently safer designs with the measures discussed above have been provided.
基金Projects(50675070,50930005) supported by the National Natural Science Foundation of ChinaProject(U0834002) supported by the Natural Science Foundation of Guangdong Province,China
文摘The outside serrated integral-fin tubes fabricated by rolling-plowing-extrusion processing were surface-treated through different processes of annealing in hydrogen atmosphere,electrochemical corrosion or sandblasting.The purpose was to eliminate residual stress,clear secondary micro-fins and enhance heat transfer performance.By comparing the surface characteristics,it is found that the finned tubes treated by electrochemical corrosion have the most glabrous surfaces where the fins are almost perfectly reserved.Clear layer cracks can be observed on the top of the fins.These structures are effective in enhancing heat transfer performance when being applied to flow heat exchange.Therefore,the finned tubes treated by electrochemical corrosion are proper for the tubular exchanger with water coolant.The finned tubes treated by sandblasting have rougher surfaces with layer cracks and micro gaps removed.As these structures are useful to clearing adhesive feculence,the tubes are more suitable for the tubular heat exchanger with oil coolant.
文摘Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).