A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substitutin...A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.展开更多
The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relations...The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.展开更多
The physicochemical properties,including the density,viscosity,and refractive index of aqueous solutions of sodium glycinate as a solvent for CO_2 absorption in the non-precipitation regime were measured under the wid...The physicochemical properties,including the density,viscosity,and refractive index of aqueous solutions of sodium glycinate as a solvent for CO_2 absorption in the non-precipitation regime were measured under the wide temperature range of 298.15 to 343.15 K.The concentration of the sodium glycinate in an aqueous form in the non-precipitation regime was identified up to 2.0 mol ? L^(-1).The coefficients of thermal expansion values were estimated from measured density data.It was found that,the densities,viscosities and refractive indices of the aqueous sodium glycinate decrease with an increase in temperature,whereas with increasing sodium glycinate concentration in the solution,all three properties increase.Thermal expansion coefficients slightly increase with rising temperature and concentration.The measured values of density,viscosity and refractive index were correlated as a function of temperature by using the least squares method.The predicted data obtained from correlation equations for all measured properties were in fairly good agreement with the experimental data.展开更多
文摘A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.
基金Supported by the National Nature Science Foundation of China (No. 20176003)
文摘The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.
基金Universiti Teknologi PETRONAS for providing financial support(Grant number YUTP-15-8209-005)RCCO_2C for technical support to complete the present research work
文摘The physicochemical properties,including the density,viscosity,and refractive index of aqueous solutions of sodium glycinate as a solvent for CO_2 absorption in the non-precipitation regime were measured under the wide temperature range of 298.15 to 343.15 K.The concentration of the sodium glycinate in an aqueous form in the non-precipitation regime was identified up to 2.0 mol ? L^(-1).The coefficients of thermal expansion values were estimated from measured density data.It was found that,the densities,viscosities and refractive indices of the aqueous sodium glycinate decrease with an increase in temperature,whereas with increasing sodium glycinate concentration in the solution,all three properties increase.Thermal expansion coefficients slightly increase with rising temperature and concentration.The measured values of density,viscosity and refractive index were correlated as a function of temperature by using the least squares method.The predicted data obtained from correlation equations for all measured properties were in fairly good agreement with the experimental data.