Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum o...Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum of some user-defined objective functions under constrains. An example of the approach application for a surface combatant hull optimization is demonstrated. In the procedure, the Particle Swarm Optimization (PSO) algorithm is adopted for exploring the design space, and the Bezier patch method is chosen to automatically modify the geometry of bulb. The total resistance is assessed by RANS solvers. It's shown that the total resistance coefficient of the optimized design is reduced by about 6.6% comparing with the original design. The given combatant design optimization example demonstrates the practicability and superiority of the proposed approach for low carbon shipping.展开更多
Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely us...Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely used. The aim of this work is to demonstrate experimentally, trough measurements carried out in these equipments, the improvement that can be achieved if several modifications are implemented in traditional household refrigeration systems. In addition, it was also simulated and analysed experimentally a slightly different equipment, a refrigeration system used for draught beverages. Both systems work on a single vapour compression refrigeration with R-134a as working fluid. In the end, by implemented the modifications tested in the virtual model, it was possible to improve their thermal behaviour, a decrease in electrical energy consumption, as well as, the associated CO2 emissions reduction can be attained. In this project, the CFD (Computational Fluid Dynamics) soffware--ANSYS Fluent was used to simulate the ambient temperature and velocity fields inside the refrigerator and in that way to validate the measured results.展开更多
This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and eff...This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and efficient computer architectures. Based on the requirements of applications within one category,we first induce and extract some inherent computing patterns or core computing kernels from the applications.Some computing models and innovative computing architectures will then be developed for these patterns or kernels,as well as the software mapping techniques. Finally those applications which can share and utilize those computing patterns or kernels can be executed very efficiently on those novel computing architectures. We think that the proposed approach may not be achievable within the existing technology. However,we believe that it will be available in the near future. Hence,we will describe this approach from the following four aspects:multiscale environment in the world,mesoscale as a key scale,energy minimization multiscale(EMMS)paradigm and our perspective.展开更多
文摘Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum of some user-defined objective functions under constrains. An example of the approach application for a surface combatant hull optimization is demonstrated. In the procedure, the Particle Swarm Optimization (PSO) algorithm is adopted for exploring the design space, and the Bezier patch method is chosen to automatically modify the geometry of bulb. The total resistance is assessed by RANS solvers. It's shown that the total resistance coefficient of the optimized design is reduced by about 6.6% comparing with the original design. The given combatant design optimization example demonstrates the practicability and superiority of the proposed approach for low carbon shipping.
文摘Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely used. The aim of this work is to demonstrate experimentally, trough measurements carried out in these equipments, the improvement that can be achieved if several modifications are implemented in traditional household refrigeration systems. In addition, it was also simulated and analysed experimentally a slightly different equipment, a refrigeration system used for draught beverages. Both systems work on a single vapour compression refrigeration with R-134a as working fluid. In the end, by implemented the modifications tested in the virtual model, it was possible to improve their thermal behaviour, a decrease in electrical energy consumption, as well as, the associated CO2 emissions reduction can be attained. In this project, the CFD (Computational Fluid Dynamics) soffware--ANSYS Fluent was used to simulate the ambient temperature and velocity fields inside the refrigerator and in that way to validate the measured results.
文摘This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and efficient computer architectures. Based on the requirements of applications within one category,we first induce and extract some inherent computing patterns or core computing kernels from the applications.Some computing models and innovative computing architectures will then be developed for these patterns or kernels,as well as the software mapping techniques. Finally those applications which can share and utilize those computing patterns or kernels can be executed very efficiently on those novel computing architectures. We think that the proposed approach may not be achievable within the existing technology. However,we believe that it will be available in the near future. Hence,we will describe this approach from the following four aspects:multiscale environment in the world,mesoscale as a key scale,energy minimization multiscale(EMMS)paradigm and our perspective.