期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
白色体系化学计量学方法研究-MLR、Kalman滤波法、PCR、PLS和褶合光谱法的比较
1
作者 亓云鹏 吴玉田 +1 位作者 郑红 李通化 《分析试验室》 CAS CSCD 北大核心 2001年第4期83-86,共4页
:对白色体系的化学计量学方法进行了研究 ,着重比较了多元线性回归法( MLR)、Kalman滤波法 ( KF)、主成分回归法 ( PCR)、偏最小二乘法 ( PLS)和褶合光谱法等方法的原理 ,并用上述方法进行复方磺胺甲口恶唑片剂的不分离分析 ,表明间接... :对白色体系的化学计量学方法进行了研究 ,着重比较了多元线性回归法( MLR)、Kalman滤波法 ( KF)、主成分回归法 ( PCR)、偏最小二乘法 ( PLS)和褶合光谱法等方法的原理 ,并用上述方法进行复方磺胺甲口恶唑片剂的不分离分析 ,表明间接校正法 ( PCR、PLS等 )比直接校正法 ( MLR、KF等 )得出的结果更准确。而以既包容了导数光谱法和正交函数法、又与 PLS相结合的褶合光谱法结果最好。 展开更多
关键词 白色体 化学计量系 多元线性回归法 Kalman滤波法 复方磺胺甲E唑 褶合光谱法 药物分析
下载PDF
FTIR Spectroscopic Study of Broad Bean Diseased Leaves 被引量:2
2
作者 李志永 刘刚 +5 位作者 李伦 欧全宏 赵兴祥 张黎 周湘萍 汪禄祥 《Agricultural Science & Technology》 CAS 2012年第11期2363-2366,2408,共5页
[Objective] The aim was to indentify diseased leaves of broad bean by vibra- tional spectroscopy. [Method] In this paper, broad bean rust, fusarium rhizome rot, broad bean zonate spot, yellow leaf curl virus and norma... [Objective] The aim was to indentify diseased leaves of broad bean by vibra- tional spectroscopy. [Method] In this paper, broad bean rust, fusarium rhizome rot, broad bean zonate spot, yellow leaf curl virus and normal leaves were studied using Fourier transform infrared spectroscopy combined with chemometrics. [Result] The spectra of the samples were similar, only with minor differences in absorption inten- sity of several peaks. Second derivative analyses show that the significant difference of all samples was in the range of 1 200-700 cm2. The data in the range of 1 200- 700 cm' were selected to evaluate correlation coefficients, hierarchical cluster analy- sis (HCA) and principal component analysis (PCA). Results showed that the correla- tion coefficients are larger than 0.928 not only between the healthy leaves, but also between the same diseased leaves. The values between healthy and diseased leaves, and among diseased leaves, are all declined. HCA and PCA yielded about 73.3% and 82.2% accuracy, respectively. [Conclusion] This study demonstrated that FTIR techniques might be used to detect crop diseases. 展开更多
关键词 FTIR spectroscopy Broad bean diseases Principal component analysis Cluster analysis
下载PDF
Linear and Nonlinear Optical Properties in Spherical Quantum Dots 被引量:1
3
作者 Yusuf Yakar Bekir Cakir Ayhan Ozmen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第6期1185-1189,共5页
We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the thi... We calculate the energy eigenvalues and the sate functions of one-electron Quantum Dot (QD) by using a combination of Quantum Genetic Algorithm (QGA) and Hartre-Fock-Roothaan (HFR) method. The linear and the third-order nonlinear optical absorption coefficients for the 1s-1p, 1p-1d, and 1d-1f transitions are examined as a function of the incident photon energy for three different values of the stoichiometric ratio. The results show that the stoichiometric ratio, impurity, relaxation time, and dot size have great influence on the optical absorption coefficients of QDs. 展开更多
关键词 optical properties spherical quantum dot QGA and HFR method
下载PDF
The Evaluation System Research based on the Working Process Systematization of the Practice Teaching Quality
4
作者 Su Lin Hu Yang 《International Journal of Technology Management》 2013年第9期37-41,共5页
The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based... The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based on working process systematization of the practice teaching quality is established, the management of quality evaluation system and the project of the monitoring are put forward. 展开更多
关键词 Practice Teaching Quality of Teaching Evaluation System Working Process Systematization
下载PDF
Phase Behavior of Ionic Liquid with Thiophene Based Binary System Predicted Using COSMO-RS Model
5
作者 Anantharaj Ramalingam Tamal Banerjee Mohd. Ali Hashim 《Journal of Environmental Science and Engineering(B)》 2013年第12期679-688,共10页
In this work, the COSMO-RS (conductor like screening model for real solvent) model algorithm was derived from the modified Rachford rice method. It could be more helpful to investigate the phase behavior of binary s... In this work, the COSMO-RS (conductor like screening model for real solvent) model algorithm was derived from the modified Rachford rice method. It could be more helpful to investigate the phase behavior of binary systems with the help of quantum chemical calculation at 6-31G* basis set. COSMO-RS was used to predict solubility of binary mixture involving non-ILs (ionic liquids), and ILs systems are: benzyl ethylamine + glycerol system (Type-Ⅰ), nitro methane + cyclohexane system (Type-Ⅱ), dipropylamine + water system (Type-Ⅲ), 1,2-ethanediol + thiophene system (Type-Ⅳ), [1,2-DMIM] [salicylate] + thiophene (Type-Ⅳ), and [EMIM] [NO3] + thiophene (Type-Ⅳ). Totally 15 cations with 27 anions were used for generating 405 binary LLE (liquid liquid equilibrium) systems involving thiophene. However, the predicted COSMO-RS values are consisting with the reported experimental values. Furthermore, the immiscibility gap at 298.15 K was determined and compared for various ILs. It was found that l-butylpyrrolidinium, l-octylquinolinium, 1-octylpyridinium and 1-octyl-3-methylimidazolium based cations are most suitable for thiophene extraction from any liquid mixture. 展开更多
关键词 Ionic liquid THIOPHENE binary system COSMO-RS model.
下载PDF
Evolution of Building Envelopes through Creating Living Characteristics
6
作者 Elaheh Najafi Mohsen Faizi 《Journal of Civil Engineering and Architecture》 2017年第12期1086-1102,共17页
Building envelopes include facades and roof, which have the most interaction and exchange with outside and natural environment. In the future, meeting buildings various complicated needs with new technological advance... Building envelopes include facades and roof, which have the most interaction and exchange with outside and natural environment. In the future, meeting buildings various complicated needs with new technological advances necessitates a change and evolution in building envelopes. Controlling the energy consumption of the buildings is mostly through controlling the energy performance of the building envelopes. New technologies lead to the intelligent facades and envelopes. The envelope can be designed to be a part of the whole building's metabolism (energy production, storage and consumption) and morphology. The envelope would be a controlled part of the building which is managed through the central control system of the building, which connects it to other parts. It caused building envelope design to be changed fundamentally, so that there is a need to interact with engineering disciplines including computer engineering, mechanical engineering, material engineering and so on. All of these caused building envelope to get closer to biological and living systems. The physical restrictions which affect buildings system and living systems are the same. So they cause the same forces to shape the structure and form of the systems and the same rules to interact with the environment. The restrictions of material and energy resources caused living systems to be energy efficient and consuming less material. But the most important difference between living systems and building systems is in maximum use of different resources. As living systems use information maximally, the building system technology is based on using maximum energy. Now, there are many reasons and restrictions that building envelopes cannot act like living systems. But technological developments and contributing more disciplines in design and construction of building envelopes caused the future way of these envelopes get close to living systems for their energy efficiency. Some of living systems characteristics which the future building envelopes would have partially or benefit for the design process or construction are self-organization, evolution principles, hierarchical levels, processing energy, reaction to environmental stimuli and self-adjustment. Self-organization is achieved in some design software and in building material production for creating formal patterns. Evolution principles provide infrastructure for soft wares for optimization purposes and form creation. Hierarchical levels refer to giving hierarchical structure to the building envelopes through layering and designing different scales. Processing energy (metabolism) would be achieved through photovoltaic and solar collectors to produce energy and in passive systems for energy storage and distribution. Controlling solar radiation absorption and transmittance would help energy transfer from outside to building and vice versa. Reaction to environmental stimuli which is one of the most important characteristics of future building envelopes would use different types of active and passive sensors to create envelope mechanical reactions through material properties or collect data for processing in the control center to determine the right reaction. The reaction would be through different strategies such as changing properties and moving. Reaction could be passive or active. Self-adjustment can be achieved by control systems and processing units. All of these mean intelligent envelopes are essential parts of future buildings. Though it is now started with new design soft wares based on biological principles to optimize different parameters affecting the envelope function or to create the most efficient form. 展开更多
关键词 Intelligent envelopes living systems new technologies environmentally respondent energy consumption.
下载PDF
Small Scale Refrigerators and Freezers: Thermal Improvements in the Envelope
7
作者 Clito Afonso Joaquim Gabriel 《Journal of Environmental Science and Engineering(A)》 2017年第1期1-14,共14页
Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely us... Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely used. The aim of this work is to demonstrate experimentally, trough measurements carried out in these equipments, the improvement that can be achieved if several modifications are implemented in traditional household refrigeration systems. In addition, it was also simulated and analysed experimentally a slightly different equipment, a refrigeration system used for draught beverages. Both systems work on a single vapour compression refrigeration with R-134a as working fluid. In the end, by implemented the modifications tested in the virtual model, it was possible to improve their thermal behaviour, a decrease in electrical energy consumption, as well as, the associated CO2 emissions reduction can be attained. In this project, the CFD (Computational Fluid Dynamics) soffware--ANSYS Fluent was used to simulate the ambient temperature and velocity fields inside the refrigerator and in that way to validate the measured results. 展开更多
关键词 Small scalerefrigerators/freezer thermal efficiency air infiltration SUSTAINABILITY CO2 emissions reduction.
下载PDF
Effects of arbuscular mycorrhizal fungi on carbon assimilation and ecological stoichiometry of maize under combined abiotic stresses
8
作者 Qiong Ran Songlin Zhang +3 位作者 Muhammad Arif Xueting Yin Shanshan Chen Guangqian Ren 《Journal of Plant Ecology》 SCIE CSCD 2024年第2期74-88,共15页
Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.T... Arbuscular mycorrhizal fungi(AMF)enhance plant tolerance to abiotic stresses like salinity and improve crop yield.However,their effects are variable,and the underlying cause of such variation remains largely unknown.This study aimed to assess how drought modifed the effect of AMF on plant resistance to high calcium-saline stress.A pot experiment was performed to examine how AMF inoculation affects the growth,photosynthetic activity,nutrient uptake and carbon(C),nitrogen(N)and phosphorus(P)stoichiometric ratio(C:N:P)of maize under high calcium stress and contrasting water conditions.The results showed that high calcium stress signifcantly reduced mycorrhizal colonization,biomass accumulation,C assimilation rate and C:N stoichiometric ratio in plant tissues.Besides,the adverse effects of calcium stress on photosynthesis were exacerbated under drought.AMF inoculation profoundly alleviated such reductions under drought and saline stress.However,it barely affected maize performance when subjected to calcium stress under well-watered conditions.Moreover,watering changed AMF impact on nutrient allocation in plant tissues.Under well-watered conditions,AMF stimulated P accumulation in roots and plant growth,but did not induce leaf P accumulation proportional to C and N,resulting in increased leaf C:P and N:P ratios under high calcium stress.In contrast,AMF decreased N content and the N:P ratio in leaves under drought.Overall,AMF inoculation improved maize resistance to calcium-salt stress through enhanced photosynthesis and modulation of nutrient stoichiometry,particularly under water defcit conditions.These results highlighted the regulatory role of AMF in carbon assimilation and nutrient homeostasis under compound stresses,and provide signifcant guidance on the improvement of crop yield in saline and arid regions. 展开更多
关键词 arbuscular mycorrhizal fungi compound abiotic stresses C:N:P stoichiometry induced systemic resistance calcium-salt stress
原文传递
Interspecific interactions affect N and P uptake rather than N:P ratios of plant species:evidence from intercropping 被引量:2
9
作者 Wei-Ping Zhang Dario Fornara +5 位作者 Guang-Cai Liu Josep Peñuelas Jordi Sardans Jian-Hao Sun Li-Zhen Zhang Long Li 《Journal of Plant Ecology》 SCIE CSCD 2022年第2期223-236,共14页
Quantifying stoichiometry of crop N and P acquisition(i.e.removal from farmland)under different agronomic practices is essential for understanding nutrient budgets and optimizing N and P fertilizer application in agro... Quantifying stoichiometry of crop N and P acquisition(i.e.removal from farmland)under different agronomic practices is essential for understanding nutrient budgets and optimizing N and P fertilizer application in agroecosystems.It is not clear how plant N and P uptake and N:P stoichiometry vary between monoculture and intercropping throughout an entire growing season under different N fertilization and mulching practices.Here,we addressed how plant interspecific competition for nutrients have affected the temporal dynamics of crop N and P uptake(and N:P ratios)in five cropping systems(wheat,maize and barley monocultures,and wheat/maize and barley/maize intercropping),under two N levels(0 and 225 kg N ha^(−1))and two maize mulching treatments(with and without).Wheat and barley had greater N and P competitive ability than maize,leading to an increase in N and P uptake of wheat and barley and a decrease in N and P uptake of maize during co-growth stages in intercropping.N:P ratios of three crop species decreased with plant growth.Crop-level N:P ratios were either not affected by intercropping or did not change consistently with N fertilization while film mulching decreased maize N:P ratios.Community-level N:P ratios of the two intercrops were different from those of the corresponding monoculture at maturity.Because(i)the proportion of N and P removal from intercropping differs from monocultures,and(ii)N and P uptake by crops is decoupled under N fertilization and mulching,these findings may have practical implications for the nutrient budget of intercropping systems. 展开更多
关键词 ecological stoichiometry growth-rate hypothesis intercropping system interspecific competition nitrogen addition nutrient budget plastic film mulch
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部