Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-pola...Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups, 10%-18% to aromatic/aliphatic amines and 6%~11% to indole- and pyrrole-like N. Whereas in the spectrum of the fulvic acid from weathered coal 46%, at least, of the total 15N-signal intensity might be assigned to pyrrole-like N, 14% to aromatic/aliphatic ammes, and the remaining intensities could not be assigned with certainty. Data on nonhydrolyzable residue of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis. Project (No. 39790100) supported by the National Natural Science Foundation of China.展开更多
Potassium chloride, Na-pyrophosphate, CuCl2, NH4-oxalate, dithionite-citrate-bicarbonate (DCB) and Na-citrate solutions were employed to extract aluminum (Al) and iron (Fe) sequentially and separately from 15 acidic s...Potassium chloride, Na-pyrophosphate, CuCl2, NH4-oxalate, dithionite-citrate-bicarbonate (DCB) and Na-citrate solutions were employed to extract aluminum (Al) and iron (Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains, Hunan Province, China. Many evidences showed that separate pyrophosphate extracted mainly KCI-extractable Al, organo-Al complexes and some inorganic Al compounds, whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes. CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils. Separate oxalate did not extract all KCl-Pyrophosphate- CuCl2 -oxalate sequentially extractable Al and Fe. Also, separate DCB did not extract all KCl- pyrophosphate- CuCl2 -oxalate- DCB sequentially extractable Al. The forms of Al extracted by oxalate and DCB from the soils were majorly noncrystalline. The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.展开更多
基金supported by the National Natural science Foundation of China.(No.39790100)
文摘Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups, 10%-18% to aromatic/aliphatic amines and 6%~11% to indole- and pyrrole-like N. Whereas in the spectrum of the fulvic acid from weathered coal 46%, at least, of the total 15N-signal intensity might be assigned to pyrrole-like N, 14% to aromatic/aliphatic ammes, and the remaining intensities could not be assigned with certainty. Data on nonhydrolyzable residue of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis. Project (No. 39790100) supported by the National Natural Science Foundation of China.
文摘Potassium chloride, Na-pyrophosphate, CuCl2, NH4-oxalate, dithionite-citrate-bicarbonate (DCB) and Na-citrate solutions were employed to extract aluminum (Al) and iron (Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains, Hunan Province, China. Many evidences showed that separate pyrophosphate extracted mainly KCI-extractable Al, organo-Al complexes and some inorganic Al compounds, whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes. CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils. Separate oxalate did not extract all KCl-Pyrophosphate- CuCl2 -oxalate sequentially extractable Al and Fe. Also, separate DCB did not extract all KCl- pyrophosphate- CuCl2 -oxalate- DCB sequentially extractable Al. The forms of Al extracted by oxalate and DCB from the soils were majorly noncrystalline. The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.