The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium a...The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.展开更多
Magnesium and its alloys have attracted great attention as biocompatible and degradable biomaterials recent years.But their corrosion rate has been proved to be too high,which limits their biomedical application great...Magnesium and its alloys have attracted great attention as biocompatible and degradable biomaterials recent years.But their corrosion rate has been proved to be too high,which limits their biomedical application greatly.In order to improve the corrosion resistance,nano-fluoridated apatite(FA) coating was prepared on ZK60 magnesium alloy by a simple chemical conversion method.The FA coating showed a needle-like morphology.The polarization curves and EIS plots indicated that the FA coating improved the corrosion potential by 125 mV and doubled the polarization resistance of the magnesium alloy,meanwhile decreasing the corrosion current by two orders of magnitude of the substrate in simulated body fluid.The MTT assay indicated good cytocompatibility of L-929 cells with the fluoridated apatite coated magnesium alloy.展开更多
文摘The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.
基金supported by the Program for Young Excellent Talents in Tongji University (Grant No. 2009KJ003)"Chen Guang" project(Grant No. 10CG21) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation
文摘Magnesium and its alloys have attracted great attention as biocompatible and degradable biomaterials recent years.But their corrosion rate has been proved to be too high,which limits their biomedical application greatly.In order to improve the corrosion resistance,nano-fluoridated apatite(FA) coating was prepared on ZK60 magnesium alloy by a simple chemical conversion method.The FA coating showed a needle-like morphology.The polarization curves and EIS plots indicated that the FA coating improved the corrosion potential by 125 mV and doubled the polarization resistance of the magnesium alloy,meanwhile decreasing the corrosion current by two orders of magnitude of the substrate in simulated body fluid.The MTT assay indicated good cytocompatibility of L-929 cells with the fluoridated apatite coated magnesium alloy.