AIM: To study the influence of CXCR4/stromal cell- derived factor-1 (SDF-1) axis on E-cadherin/β-catenin complex expression in HT29 colon cancer ceils and its underlying mechanisms. METHODS: Effect of SDF-1 on E-...AIM: To study the influence of CXCR4/stromal cell- derived factor-1 (SDF-1) axis on E-cadherin/β-catenin complex expression in HT29 colon cancer ceils and its underlying mechanisms. METHODS: Effect of SDF-1 on E-cadherin/β-catenin expression was detected by immunocytochemistry. E-cadherin and/3-catenin mRNA expression levels were measured by reverse transcriptase-polymerase chain reaction. SDF-l-induced phosphorylation of phosphati- dylinositol 3-kinase (PI3K)/AKT and β-catenin was detected by Western blotting. RESULTS: The E-cadherin and β-catenin mRNA ex-pression levels in HT29 cells were lower 48 h after incubated with SDF-1 at the concentrations of 20 and 40 ng/mL (P 〈 0.05). SDF-l-induced significant phosphorylation of PI3K/AKT and β-catenin. AMD3100 and LY294002 inhibited the phosphorylation of PI3K/AKT and β-catenin. CONCLUSION: SDF-1 down-regulates the E-cadherin/ β-catenin complex expression in HT29 cells by decreasing mRNA synthesis and increasing β-catenin phosphorylation.展开更多
AIM:To investigate the role of osteopontin(OPN) and its splice variants in the proliferation of hepatocellular carcinoma(HCC).METHODS:The expression of OPN variants in HCC cell lines as well as HCC tissue samples and ...AIM:To investigate the role of osteopontin(OPN) and its splice variants in the proliferation of hepatocellular carcinoma(HCC).METHODS:The expression of OPN variants in HCC cell lines as well as HCC tissue samples and nontumour tissue was studied using polymerase chain reaction.OPN variant cDNAs were cloned into a mammalian expression vector allowing both transient expression and the production of stable OPN expressing cell lines.OPN expression was studied in these cells using Western blotting,immunofluoresnce and enzyme linked immunosorbent assay.A CD44 blocking antibody and siRNA targeting of CD44 were used to examine the role of this receptor in the OPN stimulated cell growth observed in culture.Huh-7 cells stably expressing either OPN-A,-B or-C were injected subcutaneously into the flanks of nude mice to observe in vivo tumour growth.Expression of OPN mRNA and protein in these tumours was examined using reverse transcriptionpolymerase chain reaction and immunohistochemistry.RESULTS:OPN is expressed in HCC in 3 forms,the full length OPN-A and 2 splice variants OPN-B and-C.OPN variant expression was noted in HCC tissue as well as cognate surrounding cirrhotic liver tissue.Expression of these OPN variants in the HCC derived cell line Huh-7 resulted in secretion of OPN into the culture medium.Transfer of OPN conditioned media to na ve Huh-7 and HepG2 cells resulted in significant cell growth suggesting that all OPN variants can modulate cell proliferation in a paracrine manner.Furthermore the OPN mediated increase in cellular proliferation was dependent on CD44 as only CD44 positive cell lines responded to OPN conditioned media while siRNA knockdown of CD44 blocked the proliferative effect.OPN expression also increased the proliferation of Huh-7 cells in a subcutaneous nude mouse tumour model,with Huh-7 cells expressing OPN-A showing the greatest proliferative effect.CONCLUSION:This study demonstrates that OPN plays a significant role in the proliferation of HCC through interaction with the cell surface receptor CD44.Modulation of this interaction could represent a novel strategy for the control of HCC.展开更多
AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfi de (H2S) generation. METHODS: The regulation of CSE expression in respons...AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfi de (H2S) generation. METHODS: The regulation of CSE expression in response to FXR ligands was evaluated in HepG2 cells and in wild-type and FXR null mice treated with 6-ethyl chenodeoxycholic acid (6E-CDCA), a synthetic FXR ligand. The analysis demonstrated an FXR responsive element in the 5'-flanking region of the human CSE gene. The function of this site was investigated by luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility shift assays. Livers obtained from rats treated with carbon tetrachloride alone, or in combination with 6-ethyl chenodeoxycholic acid, were studied for hydrogen sulphide generation and portal pressure measurement. RESULTS: Liver expression of CSE is regulated by bile acids by means of an FXR-mediated mechanism. Western blotting, qualitative and quantitative polymerase chain reaction, as well as immunohistochemical analysis, showed that expression of CSE in HepG2 cells and in mice is induced by treatment with an FXR ligand. Administration of 6E-CDCA to carbon tetrachloride treated rats protected against the down-regulation of CSE expression, increased H2S generation, reduced portal pressure and attenuated the endothelial dysfunction of isolated and perfused cirrhotic rat livers. CONCLUSION: These results demonstrate that CSE is an FXR-regulated gene and provide a new molecular explanation for the pathophysiology of portal hypertension.展开更多
The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activit...The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.展开更多
基金Supported by National Natural Science Foundation of China,No. 30571712 and 30810403081
文摘AIM: To study the influence of CXCR4/stromal cell- derived factor-1 (SDF-1) axis on E-cadherin/β-catenin complex expression in HT29 colon cancer ceils and its underlying mechanisms. METHODS: Effect of SDF-1 on E-cadherin/β-catenin expression was detected by immunocytochemistry. E-cadherin and/3-catenin mRNA expression levels were measured by reverse transcriptase-polymerase chain reaction. SDF-l-induced phosphorylation of phosphati- dylinositol 3-kinase (PI3K)/AKT and β-catenin was detected by Western blotting. RESULTS: The E-cadherin and β-catenin mRNA ex-pression levels in HT29 cells were lower 48 h after incubated with SDF-1 at the concentrations of 20 and 40 ng/mL (P 〈 0.05). SDF-l-induced significant phosphorylation of PI3K/AKT and β-catenin. AMD3100 and LY294002 inhibited the phosphorylation of PI3K/AKT and β-catenin. CONCLUSION: SDF-1 down-regulates the E-cadherin/ β-catenin complex expression in HT29 cells by decreasing mRNA synthesis and increasing β-catenin phosphorylation.
文摘AIM:To investigate the role of osteopontin(OPN) and its splice variants in the proliferation of hepatocellular carcinoma(HCC).METHODS:The expression of OPN variants in HCC cell lines as well as HCC tissue samples and nontumour tissue was studied using polymerase chain reaction.OPN variant cDNAs were cloned into a mammalian expression vector allowing both transient expression and the production of stable OPN expressing cell lines.OPN expression was studied in these cells using Western blotting,immunofluoresnce and enzyme linked immunosorbent assay.A CD44 blocking antibody and siRNA targeting of CD44 were used to examine the role of this receptor in the OPN stimulated cell growth observed in culture.Huh-7 cells stably expressing either OPN-A,-B or-C were injected subcutaneously into the flanks of nude mice to observe in vivo tumour growth.Expression of OPN mRNA and protein in these tumours was examined using reverse transcriptionpolymerase chain reaction and immunohistochemistry.RESULTS:OPN is expressed in HCC in 3 forms,the full length OPN-A and 2 splice variants OPN-B and-C.OPN variant expression was noted in HCC tissue as well as cognate surrounding cirrhotic liver tissue.Expression of these OPN variants in the HCC derived cell line Huh-7 resulted in secretion of OPN into the culture medium.Transfer of OPN conditioned media to na ve Huh-7 and HepG2 cells resulted in significant cell growth suggesting that all OPN variants can modulate cell proliferation in a paracrine manner.Furthermore the OPN mediated increase in cellular proliferation was dependent on CD44 as only CD44 positive cell lines responded to OPN conditioned media while siRNA knockdown of CD44 blocked the proliferative effect.OPN expression also increased the proliferation of Huh-7 cells in a subcutaneous nude mouse tumour model,with Huh-7 cells expressing OPN-A showing the greatest proliferative effect.CONCLUSION:This study demonstrates that OPN plays a significant role in the proliferation of HCC through interaction with the cell surface receptor CD44.Modulation of this interaction could represent a novel strategy for the control of HCC.
文摘AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfi de (H2S) generation. METHODS: The regulation of CSE expression in response to FXR ligands was evaluated in HepG2 cells and in wild-type and FXR null mice treated with 6-ethyl chenodeoxycholic acid (6E-CDCA), a synthetic FXR ligand. The analysis demonstrated an FXR responsive element in the 5'-flanking region of the human CSE gene. The function of this site was investigated by luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility shift assays. Livers obtained from rats treated with carbon tetrachloride alone, or in combination with 6-ethyl chenodeoxycholic acid, were studied for hydrogen sulphide generation and portal pressure measurement. RESULTS: Liver expression of CSE is regulated by bile acids by means of an FXR-mediated mechanism. Western blotting, qualitative and quantitative polymerase chain reaction, as well as immunohistochemical analysis, showed that expression of CSE in HepG2 cells and in mice is induced by treatment with an FXR ligand. Administration of 6E-CDCA to carbon tetrachloride treated rats protected against the down-regulation of CSE expression, increased H2S generation, reduced portal pressure and attenuated the endothelial dysfunction of isolated and perfused cirrhotic rat livers. CONCLUSION: These results demonstrate that CSE is an FXR-regulated gene and provide a new molecular explanation for the pathophysiology of portal hypertension.
基金Supported by Tianjin Natural Science Foundation (No033603611)
文摘The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.