针对下一代IC载板低表面粗糙度介电材料金属化应用,我们特别提出了全新的化学铜沉积速率控制配方,来改善现有的信赖性问题。此化学铜配方可在粗糙度低于0.1μm的基材上达到机械拉力值0.4 Kgf/cm以上。此外,此方法不会造成其他孔洞信赖...针对下一代IC载板低表面粗糙度介电材料金属化应用,我们特别提出了全新的化学铜沉积速率控制配方,来改善现有的信赖性问题。此化学铜配方可在粗糙度低于0.1μm的基材上达到机械拉力值0.4 Kgf/cm以上。此外,此方法不会造成其他孔洞信赖度测试(如QVP,quick via pull)出现金属种子层断裂的问题。化学铜在直径50μm,孔深约27μm的孔洞均厚能力也能达到90%以上。以上化学铜沉积速率控制配方的特性表现,确保在高阶IC载板的应用上可以达到良好的操作性与信赖度。展开更多
[目的]在高度取向碳纳米管(SA-CNTs)薄膜表面均匀地镀上一层铜可以提高其电磁屏蔽性能,为其在柔性电路板、高速微处理器、雷达反射装置、移动通信设备等方面的应用奠定基础。[方法]首先对SA-CNTs薄膜表面进行碱性除油,然后采用多巴胺预...[目的]在高度取向碳纳米管(SA-CNTs)薄膜表面均匀地镀上一层铜可以提高其电磁屏蔽性能,为其在柔性电路板、高速微处理器、雷达反射装置、移动通信设备等方面的应用奠定基础。[方法]首先对SA-CNTs薄膜表面进行碱性除油,然后采用多巴胺预活化,在SA-CNTs薄膜上形成一层聚多巴胺层,为后续AgNO3活化提供更多的活化基点,并且由于聚多巴胺的还原性,AgNO3能够在SA-CNTs薄膜上直接形成纳米银微粒,有助于化学镀铜时快速起镀,最终在SA-CNTs薄膜表面获得均匀、致密的金属铜层。采用扫描电子显微镜(SEM)、能谱仪(EDS)和接触角测量仪研究了多巴胺预活化对化学镀铜的影响。通过正交试验优化了化学镀铜工艺,分析了较优工艺条件下所得Cu镀覆SA-CNTs薄膜的表面形貌、相结构和电磁屏蔽性能。[结果]经多巴胺预活化的SA-CNTs薄膜表面可有效快速地进行化学镀铜反应,施镀过程中镀液性能稳定,所得Cu镀层结合力良好,在4~18 GHz频段的平均电磁屏蔽效能达到103.07 d B。[结论]多巴胺预活化有利于促进SA-CNTs薄膜表面化学镀铜,提高薄膜的电磁屏蔽性能,值得在柔性电路板制作方面推广应用。展开更多
文摘针对下一代IC载板低表面粗糙度介电材料金属化应用,我们特别提出了全新的化学铜沉积速率控制配方,来改善现有的信赖性问题。此化学铜配方可在粗糙度低于0.1μm的基材上达到机械拉力值0.4 Kgf/cm以上。此外,此方法不会造成其他孔洞信赖度测试(如QVP,quick via pull)出现金属种子层断裂的问题。化学铜在直径50μm,孔深约27μm的孔洞均厚能力也能达到90%以上。以上化学铜沉积速率控制配方的特性表现,确保在高阶IC载板的应用上可以达到良好的操作性与信赖度。
文摘[目的]在高度取向碳纳米管(SA-CNTs)薄膜表面均匀地镀上一层铜可以提高其电磁屏蔽性能,为其在柔性电路板、高速微处理器、雷达反射装置、移动通信设备等方面的应用奠定基础。[方法]首先对SA-CNTs薄膜表面进行碱性除油,然后采用多巴胺预活化,在SA-CNTs薄膜上形成一层聚多巴胺层,为后续AgNO3活化提供更多的活化基点,并且由于聚多巴胺的还原性,AgNO3能够在SA-CNTs薄膜上直接形成纳米银微粒,有助于化学镀铜时快速起镀,最终在SA-CNTs薄膜表面获得均匀、致密的金属铜层。采用扫描电子显微镜(SEM)、能谱仪(EDS)和接触角测量仪研究了多巴胺预活化对化学镀铜的影响。通过正交试验优化了化学镀铜工艺,分析了较优工艺条件下所得Cu镀覆SA-CNTs薄膜的表面形貌、相结构和电磁屏蔽性能。[结果]经多巴胺预活化的SA-CNTs薄膜表面可有效快速地进行化学镀铜反应,施镀过程中镀液性能稳定,所得Cu镀层结合力良好,在4~18 GHz频段的平均电磁屏蔽效能达到103.07 d B。[结论]多巴胺预活化有利于促进SA-CNTs薄膜表面化学镀铜,提高薄膜的电磁屏蔽性能,值得在柔性电路板制作方面推广应用。