This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR()...This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters.展开更多
In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the p...In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.展开更多
The molybdenum powders with average particle size of 3 μm were coated with copper by electroless plating. The influence of pretreatment, solution composition and plating conditions on electroless copper plating was s...The molybdenum powders with average particle size of 3 μm were coated with copper by electroless plating. The influence of pretreatment, solution composition and plating conditions on electroless copper plating was studied. The copper-coated molybdenum powders were examined by SEM and XRD. Results indicate that a series of optimization methods is used to add activated sites before electroless copper plating. Taking TEA and EDTA as chief and assistant complex agents respectively, 2,2'-bipyridyl and PEG as double stabilizers, the Mo powders are coated with copper successfully with little Cu20 contained, at the same time, Mo-Cu composite powders with copper content of 15 - 85 wt% can be obtained. The optimal values of pH, temperature and HCHO concentration are 12 -13, 60 -65 ℃ and 22 -26 mL/L, respectively.展开更多
文摘This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301105)the National Natural Science Foundation of China(No.51804190)+4 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2021ME240)the Youth Science Funds of Shandong Academy of Sciences,China(No.2020QN0022)the Shandong Province Key Research and Development Plan,China(Nos.2019GHZ019 and 2019JZZY020329)the Jinan Science&Technology Bureau,China(No.2019GXRC030)the Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)。
文摘In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.
基金Sponsored by the National Natural Science Founation of China(Grant No.50301017)
文摘The molybdenum powders with average particle size of 3 μm were coated with copper by electroless plating. The influence of pretreatment, solution composition and plating conditions on electroless copper plating was studied. The copper-coated molybdenum powders were examined by SEM and XRD. Results indicate that a series of optimization methods is used to add activated sites before electroless copper plating. Taking TEA and EDTA as chief and assistant complex agents respectively, 2,2'-bipyridyl and PEG as double stabilizers, the Mo powders are coated with copper successfully with little Cu20 contained, at the same time, Mo-Cu composite powders with copper content of 15 - 85 wt% can be obtained. The optimal values of pH, temperature and HCHO concentration are 12 -13, 60 -65 ℃ and 22 -26 mL/L, respectively.