This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the...This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.展开更多
A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determini...A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.展开更多
Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and ap...Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.展开更多
The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with t...The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.展开更多
In this study, high-pressure hydrothermal processing of different biomass sources and products, which include cellulose, xylan, lignin, pine wood, paper waste, and waste lignin was performed at 200-275 ℃ in presence ...In this study, high-pressure hydrothermal processing of different biomass sources and products, which include cellulose, xylan, lignin, pine wood, paper waste, and waste lignin was performed at 200-275 ℃ in presence of NiSO4 catalyst. Biomass slurry was prepared in distilled water containing NiSO4, loaded in a high-temperature high-pressure reactor and heated to different temperatures. The reaction was continued for 120 min and during the reaction gas samples were withdrawn and analyzed using Chrompack capillary column on the gas chromatograph equipped with thermal conductivity detector. The analysis of gas samples revealed the presence of H2, CO2, CO, and CH4 gases. Increase in catalyst concentration from 3 wt% to 10 wt% has significantly increased the H2 generation. Absence of catalyst, however, generated almost negligible amount of H2. Among the biomass sources and products investigated here, xylan has yielded maximum amount of H2. The liquid samples were analyzed by high-performance liquid chromatography (HPLC) and Fourier transform infrared (FTIR) spectroscopy which revealed the presence of sugars along with the other intermediates.展开更多
Energy conversion and utilization, particularly carbon-based fuel burning in air phase, have caused great environmental pollution and serious problems to society. The reactions in water phase may have the potential to...Energy conversion and utilization, particularly carbon-based fuel burning in air phase, have caused great environmental pollution and serious problems to society. The reactions in water phase may have the potential to realize clean and efficient energy conversion and utilization. Coal gasification in supercritical water is a typical carbon-based fuel conversion process in water phase, and it takes the advantages of the unique chemical and physical properties of supercritical water to convert organic matter in coal to H2 and CO2. N, S, P, Hg and other elements are deposited as inorganic salts to avoid pollution emission. The State Key Laboratory of Multiphase Flow in Power Engineering has obtained extensive experimental and theoretical results based on coal gasification in supercritical water. Supercritical water fluidized bed reactor was developed for coal gasification and seven kinds of typical feedstock were selected. The hydrogen yield covers from 0.67 to 1.74 Nm3/kg and the carbon gasification efficiency is no less than 97%. This technology has a bright future in industrialization not only in electricity generation but also in hydrogen production and high value-added chemicals. Given the gas yield obtained in laboratory-scale unit, the hydrogen production cost is U.S.$ 0.111 Nm3 when the throughput capacity is 2000 t/d. A novel thermodynamic cycle power generation system based on coal gasification in supercritical water was proposed with the obvious advantages of high coal-electricity conversion efficiency and zero pollutant emission. The cost of U.S.$ 3.69 billion for desulfuration, denitration and dust removal in China in 2013 would have been saved with this technology. Five kinds of heat supply methods are analyzed and the rates of return of investment are roughly estimated. An integrated cooperative innovation center called a new type of high-efficient coal gasification technology and its large-scale utilization was founded to enhance the industrialization of the technology vigorously.展开更多
文摘This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.
基金the State Key Development Program for Basic Research of China (No. G2000048005) the SINOPEC (No.X503023).
文摘A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.
文摘Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.
文摘The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.
文摘In this study, high-pressure hydrothermal processing of different biomass sources and products, which include cellulose, xylan, lignin, pine wood, paper waste, and waste lignin was performed at 200-275 ℃ in presence of NiSO4 catalyst. Biomass slurry was prepared in distilled water containing NiSO4, loaded in a high-temperature high-pressure reactor and heated to different temperatures. The reaction was continued for 120 min and during the reaction gas samples were withdrawn and analyzed using Chrompack capillary column on the gas chromatograph equipped with thermal conductivity detector. The analysis of gas samples revealed the presence of H2, CO2, CO, and CH4 gases. Increase in catalyst concentration from 3 wt% to 10 wt% has significantly increased the H2 generation. Absence of catalyst, however, generated almost negligible amount of H2. Among the biomass sources and products investigated here, xylan has yielded maximum amount of H2. The liquid samples were analyzed by high-performance liquid chromatography (HPLC) and Fourier transform infrared (FTIR) spectroscopy which revealed the presence of sugars along with the other intermediates.
基金supported by the National Natural Science Foundation of China(Grant Nos.5132301151306145&51236007)
文摘Energy conversion and utilization, particularly carbon-based fuel burning in air phase, have caused great environmental pollution and serious problems to society. The reactions in water phase may have the potential to realize clean and efficient energy conversion and utilization. Coal gasification in supercritical water is a typical carbon-based fuel conversion process in water phase, and it takes the advantages of the unique chemical and physical properties of supercritical water to convert organic matter in coal to H2 and CO2. N, S, P, Hg and other elements are deposited as inorganic salts to avoid pollution emission. The State Key Laboratory of Multiphase Flow in Power Engineering has obtained extensive experimental and theoretical results based on coal gasification in supercritical water. Supercritical water fluidized bed reactor was developed for coal gasification and seven kinds of typical feedstock were selected. The hydrogen yield covers from 0.67 to 1.74 Nm3/kg and the carbon gasification efficiency is no less than 97%. This technology has a bright future in industrialization not only in electricity generation but also in hydrogen production and high value-added chemicals. Given the gas yield obtained in laboratory-scale unit, the hydrogen production cost is U.S.$ 0.111 Nm3 when the throughput capacity is 2000 t/d. A novel thermodynamic cycle power generation system based on coal gasification in supercritical water was proposed with the obvious advantages of high coal-electricity conversion efficiency and zero pollutant emission. The cost of U.S.$ 3.69 billion for desulfuration, denitration and dust removal in China in 2013 would have been saved with this technology. Five kinds of heat supply methods are analyzed and the rates of return of investment are roughly estimated. An integrated cooperative innovation center called a new type of high-efficient coal gasification technology and its large-scale utilization was founded to enhance the industrialization of the technology vigorously.