The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic para...The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃.展开更多
Fouling induction period of CaCO3 on heated surface was studied with the micro video technology. The rates of nucleating and nuclei growing were measured under various experimental conditions. The experimental results...Fouling induction period of CaCO3 on heated surface was studied with the micro video technology. The rates of nucleating and nuclei growing were measured under various experimental conditions. The experimental results showed that both nucleating and nuclei growing rates of CaCO3 increased obviously with surface temperature and concentration of reagents. In addition, the experiment of fouling induction period on the surface material of chemical plated nickel-phosphorus-polytetrafluoroethylene indicated that not only the nucleate rate of CaCO3 decreased but also some fouling particles with certain size were easy to peel off from the heated surface under shearing stress, which means that the property of surface material is one of the most important factors influencing fouling induction periods.展开更多
[Cyclopentadien-Fe-naphthalene]BF4(CFN) and [cyclopentadien-Fe-anisole]BF4(CFA) as thermal cationic initiators for the curing of epoxide E44 and GGE were investigated. CFN brought out the curing of E44 at 89.1℃ and t...[Cyclopentadien-Fe-naphthalene]BF4(CFN) and [cyclopentadien-Fe-anisole]BF4(CFA) as thermal cationic initiators for the curing of epoxide E44 and GGE were investigated. CFN brought out the curing of E44 at 89.1℃ and that of GGE at 148.7℃. However, CFA had much less thermal initiating activity under 300℃. Under UV radiation for short time, the thermal initiating activities of CFN and CFA were enhanced obviously. It was observed that the initiating onset temperature decreased and the evolved heat of the curing increased. Both CFN and CFA can carry out the polymerization of E44 and GGE near 85℃ and 112℃ by UV radiation.展开更多
The energy utilization consistency method in process integration extracts the key component of process energy utilization, and simplifies the procedure of process analysis and integration. The method allows the conver...The energy utilization consistency method in process integration extracts the key component of process energy utilization, and simplifies the procedure of process analysis and integration. The method allows the conversion of the total process energy integration into a synthesis problem of a pseudo-heat exchanger network. The advantages of using the energy utilization consistency and the pseudo-temperature methods are presented by two examples of integration of large-scale complex processes. The improved genetic algorithm is proved to be an effective tool in the retrofitting procedures.展开更多
Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effect...Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effects of spray parameters on droplets Santer mean diameter (SMD), droplet collision speed, the thickness of liquid-film, the surface temperature and its uniformity were analyzed in the present study. The simulation results and the experimental data obtained in the available literature agree within 13.8%, The computational results show that the spray pressure is the main factor to realize the atomization. Increasing the mass flux and the spray pressure, the droplet collision speed increases while the corresponding maximum film thickness on the heated surface declines. The surface temperature changes indistinctively with the increase of the spray distance, but the temperature distribution tends to be uniform.展开更多
基金Project 50474056 supported by the National Natural Science Foundation of China
文摘The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃.
基金Supported by the National Natural Science Foundation of China.
文摘Fouling induction period of CaCO3 on heated surface was studied with the micro video technology. The rates of nucleating and nuclei growing were measured under various experimental conditions. The experimental results showed that both nucleating and nuclei growing rates of CaCO3 increased obviously with surface temperature and concentration of reagents. In addition, the experiment of fouling induction period on the surface material of chemical plated nickel-phosphorus-polytetrafluoroethylene indicated that not only the nucleate rate of CaCO3 decreased but also some fouling particles with certain size were easy to peel off from the heated surface under shearing stress, which means that the property of surface material is one of the most important factors influencing fouling induction periods.
文摘[Cyclopentadien-Fe-naphthalene]BF4(CFN) and [cyclopentadien-Fe-anisole]BF4(CFA) as thermal cationic initiators for the curing of epoxide E44 and GGE were investigated. CFN brought out the curing of E44 at 89.1℃ and that of GGE at 148.7℃. However, CFA had much less thermal initiating activity under 300℃. Under UV radiation for short time, the thermal initiating activities of CFN and CFA were enhanced obviously. It was observed that the initiating onset temperature decreased and the evolved heat of the curing increased. Both CFN and CFA can carry out the polymerization of E44 and GGE near 85℃ and 112℃ by UV radiation.
文摘The energy utilization consistency method in process integration extracts the key component of process energy utilization, and simplifies the procedure of process analysis and integration. The method allows the conversion of the total process energy integration into a synthesis problem of a pseudo-heat exchanger network. The advantages of using the energy utilization consistency and the pseudo-temperature methods are presented by two examples of integration of large-scale complex processes. The improved genetic algorithm is proved to be an effective tool in the retrofitting procedures.
基金supported by National Natural Science Foundation of China (No.50776087).
文摘Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effects of spray parameters on droplets Santer mean diameter (SMD), droplet collision speed, the thickness of liquid-film, the surface temperature and its uniformity were analyzed in the present study. The simulation results and the experimental data obtained in the available literature agree within 13.8%, The computational results show that the spray pressure is the main factor to realize the atomization. Increasing the mass flux and the spray pressure, the droplet collision speed increases while the corresponding maximum film thickness on the heated surface declines. The surface temperature changes indistinctively with the increase of the spray distance, but the temperature distribution tends to be uniform.