Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial...Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.展开更多
Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by ...Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.展开更多
The research made a conclusion on different production chains of Flammulina velutipes and proposed regeneration method for cultivating Flammulina velutipes. The results indicated that with saw dusts, bran and corn flo...The research made a conclusion on different production chains of Flammulina velutipes and proposed regeneration method for cultivating Flammulina velutipes. The results indicated that with saw dusts, bran and corn flour as culture medium, when dry materials in bags reached 360 g, 450 g Flammulina velutipes would be produced and biotransformation efficiency can be 125%-128%. Additionally, the cultivated Flammulina velutipes proves better in quality and longer in shelflife, and the source of raw materials is not confined in a specific region, showing a promising prospect.展开更多
[Objective] This paper analyzed present status of broomcorn millet produc- tion in China, including cultivation methods, fertilization utilization, diseases, insect pests and disasters, machinery development, planting...[Objective] This paper analyzed present status of broomcorn millet produc- tion in China, including cultivation methods, fertilization utilization, diseases, insect pests and disasters, machinery development, planting benefit and other aspects. [Method] The corn millet data reported by China Industrial and Technological Re- search System of Millet in 2011 were analyzed by descriptive statistical analysis of EXCEL. [Result] The results show that 17 678.57 kg/ha of farm manure, 155.77 kg/ha of urea, 259.5 kg/ha of compound fertilizer, 203.13 kg/ha of phosphate fertilizer and 75 kg/ha of potash fertilizer were used in China; the national mechanization degree of broomcorn millet production is lower than 30% in all; the average income of broomcorn millet production is 10 503.33 yuan/ha, and the VCR is 2.64; most broomcorn millet producing areas are affected by mild pests and diseases, very few are affected by mild and moderate pests and diseases, and the impact of natural disasters is the lightest. [~onclusien] Currently fertilizer utilization for broomcorn millet is proper but the mechanization level and planting benefit are low, natural disasters, pests and diseases are not severe; finally the authors proposed some suggestions on the fertilizer utilization, mechanization production, benefit increasing, disaster warning, disease and insect controlling and government policy-making for broomcorn millet production.展开更多
Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transform...Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.展开更多
The performance evaluation and chemical property analysis of the recycled warm mix asphalt (RWMA) binders containing 100% artificial reclaimed asphalt ( RA) are presented, and the combined effects of different p...The performance evaluation and chemical property analysis of the recycled warm mix asphalt (RWMA) binders containing 100% artificial reclaimed asphalt ( RA) are presented, and the combined effects of different percentages of the rejuvenator and warm mix additive (WMA) additives on RWMA binders are analyzed through laboratory tests. Three types of WMA additives ad one commercial rejuvenator named GST were selected to restore the artificial RA. The laboratory performace tests including the penetration test, softening test ad rotary, viscosity (RV) test were carried out. In addition, the Fourier transform infrared spectroscopy (FTIR) test was performed to explore the chemical property of RWMA binders. The results of the performance tests indicate that the rejuvenator GST has the ability to restore the artificial RA; choosing the optimum content of WMA additives and rejuvenator is the key to restoring 100% artificial RA, since the combined effects of them play an important role in determining the basic laboratory performance of RWMA binders. The FTIR tests show that the process of recycling mainly adjusts the chemical component of aged asphalt and no remarkable change is observed in the FTI1R spectra of RWMA binders in terms of chemical functional groups with the introduction of WMA additives.展开更多
Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copp...Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.展开更多
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewab...CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewable energy is of significance,since it can not only reduce carbon emission by the utilization of CO2 as feedstock but also store low-grade renewable energy as high energy density chemical energy.Although studies on photoelectrocatalytic reduction of CO2 using renewable energy are increasing,artificial bioconversion of CO2 as an important novel pathway to synthesize chemicals has attracted more and more attention.By simulating the natural photosynthesis process of plants and microorganisms,the artificial bioconversion of CO2 can efficiently synthesize chemicals via a designed and constructed artificial photosynthesis system.This review focuses on the recent advancements in artificial bioreduction of CO2,including the key techniques,and artificial biosynthesis of compounds with different carbon numbers.On the basis of the aforementioned discussions,we present the prospects for further development of artificial bioconversion of CO2 to chemicals.展开更多
In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools...In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.展开更多
This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and ...This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and environmental protection.The advances and breakthrough of SINOPEC in the production of H2O2 through the anthraquinone route is presented in this review,highlighting recent innovative technology on these aspects developed independently.The technical prospect and scientific challenges associated with the direct synthesis method from hydrogen and oxygen are also briefly discussed.展开更多
The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (seq...The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (sequence coding and decimal coding) developed by us. In which, the partially matched cross over (PMX) and reverse mutation are used for the sequence coding, whereas the arithmetic crossover and heteropic mutation are used for the decimal coding. In addition, the relationship between production scale and production cost is analyzed and the maximum profit is always a trade-off of the production scale and production cost. Two examples are solved to demonstrate the effectiveness of the method.展开更多
The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technolo...The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.展开更多
Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneousl...Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneously or respectively. Six novel strains containing phbCAB and vgb with or without lytic genes were constructed. Strain VG1 (pTU14), in which vgb, phbCAB and S-RRz could all be successfully expressed, has superior characteristics in cell growth and PHB accumulation, while the results of strains containing vgb and phbCAB without S- RRz were not better than that of strains harbored ph&CAB only. The simultaneous expression of vgb and S- RRz in the recombinant VG1 (pTU14) showed a great potential for low-cost production of PHB.展开更多
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ...Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.展开更多
The research and development of penicillin started with dificulty before 1949 and achieved certain results.In 1951,after the founding of the People’ s Republic of China,Zhang Weishen,as the only Chinese scientist who...The research and development of penicillin started with dificulty before 1949 and achieved certain results.In 1951,after the founding of the People’ s Republic of China,Zhang Weishen,as the only Chinese scientist who had been trained and worked in a penicillin research and development center in the United States for many years,overcame many difficulties and returned to China.In 1953,with the efforts of Zhang Weishen and his colleagues,China realized the industrialized production of penicillin,alleviating the urgent needs of the masses.Antibiotics has also become the first discipline to achieve major scientific and technological achievements after the founding of the New China.In the mid-1950s,the technical breakthrough in the localization of lactose substitutes marked the localization of the raw materials of the penicillin-producing culture medium,which paved the way for the industrialized production of penicillin with Chinese characteristics.Antibiotics have become one of the most widely used and affordable drugs for hundreds of millions of patients in China,and China has since ended the humiliating history of the "Sick Man of East Asia".展开更多
基金supported by the European Union within the framework of the“National Laboratory for Autonomous Systems”(No.RRF-2.3.1-212022-00002)the Hungarian“Research on prime exploitation of the potential provided by the industrial digitalisation(No.ED-18-2-2018-0006)”the“Research on cooperative production and logistics systems to support a competitive and sustainable economy(No.TKP2021-NKTA-01)”。
文摘Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.
基金Supported by the National Key Basic Research Program of China("973"Project)(2009CB724401)the China Postdoctoral Science Foundation(20070420208)the Postdoctoral Innovation Foundation of Shandong Province(200702023)~~
文摘Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.
文摘The research made a conclusion on different production chains of Flammulina velutipes and proposed regeneration method for cultivating Flammulina velutipes. The results indicated that with saw dusts, bran and corn flour as culture medium, when dry materials in bags reached 360 g, 450 g Flammulina velutipes would be produced and biotransformation efficiency can be 125%-128%. Additionally, the cultivated Flammulina velutipes proves better in quality and longer in shelflife, and the source of raw materials is not confined in a specific region, showing a promising prospect.
基金Supported by Special Fund for Construction of Modern Agricultural Technology System(CARS-07-12.5-A18)~~
文摘[Objective] This paper analyzed present status of broomcorn millet produc- tion in China, including cultivation methods, fertilization utilization, diseases, insect pests and disasters, machinery development, planting benefit and other aspects. [Method] The corn millet data reported by China Industrial and Technological Re- search System of Millet in 2011 were analyzed by descriptive statistical analysis of EXCEL. [Result] The results show that 17 678.57 kg/ha of farm manure, 155.77 kg/ha of urea, 259.5 kg/ha of compound fertilizer, 203.13 kg/ha of phosphate fertilizer and 75 kg/ha of potash fertilizer were used in China; the national mechanization degree of broomcorn millet production is lower than 30% in all; the average income of broomcorn millet production is 10 503.33 yuan/ha, and the VCR is 2.64; most broomcorn millet producing areas are affected by mild pests and diseases, very few are affected by mild and moderate pests and diseases, and the impact of natural disasters is the lightest. [~onclusien] Currently fertilizer utilization for broomcorn millet is proper but the mechanization level and planting benefit are low, natural disasters, pests and diseases are not severe; finally the authors proposed some suggestions on the fertilizer utilization, mechanization production, benefit increasing, disaster warning, disease and insect controlling and government policy-making for broomcorn millet production.
基金Project(41171361)supported by the National Natural Science Foundation of China
文摘Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.
基金The National Natural Science Foundation of China(No.50578031)
文摘The performance evaluation and chemical property analysis of the recycled warm mix asphalt (RWMA) binders containing 100% artificial reclaimed asphalt ( RA) are presented, and the combined effects of different percentages of the rejuvenator and warm mix additive (WMA) additives on RWMA binders are analyzed through laboratory tests. Three types of WMA additives ad one commercial rejuvenator named GST were selected to restore the artificial RA. The laboratory performace tests including the penetration test, softening test ad rotary, viscosity (RV) test were carried out. In addition, the Fourier transform infrared spectroscopy (FTIR) test was performed to explore the chemical property of RWMA binders. The results of the performance tests indicate that the rejuvenator GST has the ability to restore the artificial RA; choosing the optimum content of WMA additives and rejuvenator is the key to restoring 100% artificial RA, since the combined effects of them play an important role in determining the basic laboratory performance of RWMA binders. The FTIR tests show that the process of recycling mainly adjusts the chemical component of aged asphalt and no remarkable change is observed in the FTI1R spectra of RWMA binders in terms of chemical functional groups with the introduction of WMA additives.
文摘Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金supported by the National Natural Science Foundation of China (91745114, 21802160)the National Key R&D Program of China (2016YFA0202800)+2 种基金Shanghai Sailing Program (18YF1425700)Shanghai Advanced Research Institute Innovation Research Program (Y756812ZZ1(172002),Y756803ZZ1(171003))the support from the Hundred Talents Program of the Chinese Academy of Sciences~~
文摘CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewable energy is of significance,since it can not only reduce carbon emission by the utilization of CO2 as feedstock but also store low-grade renewable energy as high energy density chemical energy.Although studies on photoelectrocatalytic reduction of CO2 using renewable energy are increasing,artificial bioconversion of CO2 as an important novel pathway to synthesize chemicals has attracted more and more attention.By simulating the natural photosynthesis process of plants and microorganisms,the artificial bioconversion of CO2 can efficiently synthesize chemicals via a designed and constructed artificial photosynthesis system.This review focuses on the recent advancements in artificial bioreduction of CO2,including the key techniques,and artificial biosynthesis of compounds with different carbon numbers.On the basis of the aforementioned discussions,we present the prospects for further development of artificial bioconversion of CO2 to chemicals.
文摘In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.
文摘This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and environmental protection.The advances and breakthrough of SINOPEC in the production of H2O2 through the anthraquinone route is presented in this review,highlighting recent innovative technology on these aspects developed independently.The technical prospect and scientific challenges associated with the direct synthesis method from hydrogen and oxygen are also briefly discussed.
文摘The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (sequence coding and decimal coding) developed by us. In which, the partially matched cross over (PMX) and reverse mutation are used for the sequence coding, whereas the arithmetic crossover and heteropic mutation are used for the decimal coding. In addition, the relationship between production scale and production cost is analyzed and the maximum profit is always a trade-off of the production scale and production cost. Two examples are solved to demonstrate the effectiveness of the method.
文摘The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.
基金Supported by the National Natural Science Foundation of China (No. 29834103, 29876021).
文摘Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneously or respectively. Six novel strains containing phbCAB and vgb with or without lytic genes were constructed. Strain VG1 (pTU14), in which vgb, phbCAB and S-RRz could all be successfully expressed, has superior characteristics in cell growth and PHB accumulation, while the results of strains containing vgb and phbCAB without S- RRz were not better than that of strains harbored ph&CAB only. The simultaneous expression of vgb and S- RRz in the recombinant VG1 (pTU14) showed a great potential for low-cost production of PHB.
文摘Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.
文摘The research and development of penicillin started with dificulty before 1949 and achieved certain results.In 1951,after the founding of the People’ s Republic of China,Zhang Weishen,as the only Chinese scientist who had been trained and worked in a penicillin research and development center in the United States for many years,overcame many difficulties and returned to China.In 1953,with the efforts of Zhang Weishen and his colleagues,China realized the industrialized production of penicillin,alleviating the urgent needs of the masses.Antibiotics has also become the first discipline to achieve major scientific and technological achievements after the founding of the New China.In the mid-1950s,the technical breakthrough in the localization of lactose substitutes marked the localization of the raw materials of the penicillin-producing culture medium,which paved the way for the industrialized production of penicillin with Chinese characteristics.Antibiotics have become one of the most widely used and affordable drugs for hundreds of millions of patients in China,and China has since ended the humiliating history of the "Sick Man of East Asia".