The neutral zinc sulfate solution obtained from hydrometallurgical process of Angouran zinc concentrate has cadmium, nickel and cobalt impurities, that must be purified before electrowinning. Therefore, cadmium and ni...The neutral zinc sulfate solution obtained from hydrometallurgical process of Angouran zinc concentrate has cadmium, nickel and cobalt impurities, that must be purified before electrowinning. Therefore, cadmium and nickel are usually cemented out by addition of zinc dust and remained nickel and cobalt cemented out at second stage with zinc powder and arsenic trioxide. In this research, a new approach is described for determination of effective parameters and optimization of zinc electrolyte hot purification process using statistical design of experiments. The Taguchi method based on orthogonal array design(OAD) has been used to arrange the experimental runs. The experimental conditions involved in the work are as follows: the temperature range of 70-90 ℃ for reaction temperature(T), 30-90 min for reaction time(t), 2-4 g/L for zinc powder mass concentration(M), one to five series for zinc dust particle size distributions(S1-S5), and 0.1-0.5 g/L(C) for arsenic trioxide mass concentration. Optimum conditions for hot purification obtained in this work are T4(85 ℃), t4=75 min, M4=3.5 g/L, S4(Serie 4), and C2=0.2 g/L.展开更多
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ...Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.展开更多
Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the ...Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the most complex and dangerous task.Evaluation of trafficability for tracked vehicles for deep sea mining is essential. Rare earth elements(REEs) are used in a wide range of modern applications. These applications are highly specific and substitutes are inferior or unknown. One possible source of the REE could be the poly-metallic nodule, at present explored in the tropical part of the Pacific Ocean. In developing miners of high performance, dynamic behaviour should be investigated under various traveling conditions. The mechanics of tracked vehicles is of continuing interest to organizations and agencies that specify design and operate tracked vehicles. Most works done are on the complete track vehicle system but in this work the research activity is aimed only at the track system with the basic aim of optimizing the track system design so that it can be manufactured by using the minimum resources. Equations and models are developed for the track system of a miner during steering motion. These equations and models could further be used for design optimization of the track system.展开更多
Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthal...Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups. Using such an extended dataset cornprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study. The new suggested collection of 12 functional groups and a simple linear regression lead to promising statis- tics of R2= 0.958, Q2 =0.956, and AEE= 57 kJ.mo1-1 for the whole dataset. Moreover, unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach. The resultant model needs no technical software/calculations, and thus can be easily applied by a non-specialist user.展开更多
Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and ana...Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and analysis for collaborative tracking via particle filter are presented in this paper. Collaborative tracking is implemented through sensor selection, and results of tracking are propagated among sensor nodes. In order to save communication resources, a new Gaussian sum particle filter, called Gaussian sum quasi particle filter, to perform the target tracking is presented, in which only mean and covariance of mixands need to be communicated. Based on the Gaussian sum quasi particle filter, a sensor selection criterion is proposed, which is computationally much simpler than other sensor selection criterions. Simulation results show that the proposed method works well for target tracking.展开更多
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m...The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.展开更多
In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new...In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.展开更多
To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key constructio...To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key construction technologies based on building information modelling(BIM),namely,parameterised modelling for the PFLCW layout design,drawing generation to draw the PFLCW layout and quantity statistics for extracting PFLCW quantities,are proposed.Then,a reinforced concrete(RC)frame infilled with PFLCW is considered the test model to verify the feasibility of the aforementioned technologies.The results show that PFLCW layout design can be accomplished rapidly and visually using parameterised modelling technology.The PFLCW layout diagram can be generated directly using drawing generation technology.The proposed quantity statistics technology enables the automatic export of PFLCW bills of quantities.The built parameterised model helps construction workers rapidly and intuitively understand the specific layout details of PFLCWs.Moreover,the generated layout drawing and the bills of quantities based on the parameterised model can guide the production and on-site installation of PFLCWs.The research conclusions can serve as a practical guide and technical support for PFLCW engineering applications.展开更多
According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications o...According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications of WfMC and the workflow process definition meta-model. The design for system structure is presented in detail, and the key technologies for system implementation are also introduced. Additionally, an example is illustrated to demonstrate the validity of system.展开更多
Based on frequency response and convex optimization,a novel optimal control system was developed for chemical processes.The feedforward control is designed to improve the tracking performance of closed loop chemical s...Based on frequency response and convex optimization,a novel optimal control system was developed for chemical processes.The feedforward control is designed to improve the tracking performance of closed loop chemical systems.The parametric model is not required because the system directly utilizes the frequency response of the loop transfer function,which can be measured accurately.In particular,the extremal values of magnitude and phase can be solved according to constrained quadratic programming optimizer and convex optimization.Simulation examples show the effectiveness of the method.The design method is simple and easily adopted in chemical industry.展开更多
Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process sys...Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.展开更多
Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overc...Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.展开更多
Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined...Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.展开更多
Building envelopes include facades and roof, which have the most interaction and exchange with outside and natural environment. In the future, meeting buildings various complicated needs with new technological advance...Building envelopes include facades and roof, which have the most interaction and exchange with outside and natural environment. In the future, meeting buildings various complicated needs with new technological advances necessitates a change and evolution in building envelopes. Controlling the energy consumption of the buildings is mostly through controlling the energy performance of the building envelopes. New technologies lead to the intelligent facades and envelopes. The envelope can be designed to be a part of the whole building's metabolism (energy production, storage and consumption) and morphology. The envelope would be a controlled part of the building which is managed through the central control system of the building, which connects it to other parts. It caused building envelope design to be changed fundamentally, so that there is a need to interact with engineering disciplines including computer engineering, mechanical engineering, material engineering and so on. All of these caused building envelope to get closer to biological and living systems. The physical restrictions which affect buildings system and living systems are the same. So they cause the same forces to shape the structure and form of the systems and the same rules to interact with the environment. The restrictions of material and energy resources caused living systems to be energy efficient and consuming less material. But the most important difference between living systems and building systems is in maximum use of different resources. As living systems use information maximally, the building system technology is based on using maximum energy. Now, there are many reasons and restrictions that building envelopes cannot act like living systems. But technological developments and contributing more disciplines in design and construction of building envelopes caused the future way of these envelopes get close to living systems for their energy efficiency. Some of living systems characteristics which the future building envelopes would have partially or benefit for the design process or construction are self-organization, evolution principles, hierarchical levels, processing energy, reaction to environmental stimuli and self-adjustment. Self-organization is achieved in some design software and in building material production for creating formal patterns. Evolution principles provide infrastructure for soft wares for optimization purposes and form creation. Hierarchical levels refer to giving hierarchical structure to the building envelopes through layering and designing different scales. Processing energy (metabolism) would be achieved through photovoltaic and solar collectors to produce energy and in passive systems for energy storage and distribution. Controlling solar radiation absorption and transmittance would help energy transfer from outside to building and vice versa. Reaction to environmental stimuli which is one of the most important characteristics of future building envelopes would use different types of active and passive sensors to create envelope mechanical reactions through material properties or collect data for processing in the control center to determine the right reaction. The reaction would be through different strategies such as changing properties and moving. Reaction could be passive or active. Self-adjustment can be achieved by control systems and processing units. All of these mean intelligent envelopes are essential parts of future buildings. Though it is now started with new design soft wares based on biological principles to optimize different parameters affecting the envelope function or to create the most efficient form.展开更多
文摘The neutral zinc sulfate solution obtained from hydrometallurgical process of Angouran zinc concentrate has cadmium, nickel and cobalt impurities, that must be purified before electrowinning. Therefore, cadmium and nickel are usually cemented out by addition of zinc dust and remained nickel and cobalt cemented out at second stage with zinc powder and arsenic trioxide. In this research, a new approach is described for determination of effective parameters and optimization of zinc electrolyte hot purification process using statistical design of experiments. The Taguchi method based on orthogonal array design(OAD) has been used to arrange the experimental runs. The experimental conditions involved in the work are as follows: the temperature range of 70-90 ℃ for reaction temperature(T), 30-90 min for reaction time(t), 2-4 g/L for zinc powder mass concentration(M), one to five series for zinc dust particle size distributions(S1-S5), and 0.1-0.5 g/L(C) for arsenic trioxide mass concentration. Optimum conditions for hot purification obtained in this work are T4(85 ℃), t4=75 min, M4=3.5 g/L, S4(Serie 4), and C2=0.2 g/L.
基金Supported by the National High-Tech Development Program of China(No.863-511-920-011,2001AA411230).
文摘Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.
基金Project(2012AA091201)supported by the National High-tech Research&Development Program of China
文摘Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the most complex and dangerous task.Evaluation of trafficability for tracked vehicles for deep sea mining is essential. Rare earth elements(REEs) are used in a wide range of modern applications. These applications are highly specific and substitutes are inferior or unknown. One possible source of the REE could be the poly-metallic nodule, at present explored in the tropical part of the Pacific Ocean. In developing miners of high performance, dynamic behaviour should be investigated under various traveling conditions. The mechanics of tracked vehicles is of continuing interest to organizations and agencies that specify design and operate tracked vehicles. Most works done are on the complete track vehicle system but in this work the research activity is aimed only at the track system with the basic aim of optimizing the track system design so that it can be manufactured by using the minimum resources. Equations and models are developed for the track system of a miner during steering motion. These equations and models could further be used for design optimization of the track system.
基金Supported by the "Tehran Naftoon Arya Eng. Co." research committee of Iran
文摘Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups. Using such an extended dataset cornprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study. The new suggested collection of 12 functional groups and a simple linear regression lead to promising statis- tics of R2= 0.958, Q2 =0.956, and AEE= 57 kJ.mo1-1 for the whole dataset. Moreover, unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach. The resultant model needs no technical software/calculations, and thus can be easily applied by a non-specialist user.
基金Supported by the National Natural Science Foundation of China (No. 60372107)Ph.D. Innovation Program of Ji-angsu Province (No. 200670)+1 种基金Major Science Foundation of Jiangsu Province (BK2007729)Major Science Foundation of Jiangsu Universities (06KJ510001)
文摘Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and analysis for collaborative tracking via particle filter are presented in this paper. Collaborative tracking is implemented through sensor selection, and results of tracking are propagated among sensor nodes. In order to save communication resources, a new Gaussian sum particle filter, called Gaussian sum quasi particle filter, to perform the target tracking is presented, in which only mean and covariance of mixands need to be communicated. Based on the Gaussian sum quasi particle filter, a sensor selection criterion is proposed, which is computationally much simpler than other sensor selection criterions. Simulation results show that the proposed method works well for target tracking.
基金Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), "Shu Guang" project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.
基金Supported by the Special Scientific Research of Selection and Cultivation of Excellent Young Teachers in Shanghai Universities(YYY11076)
文摘In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.
基金The National Key Research and Development Program of China(No.2020YFD1100404-4)the National Natural Science Foundation for Young Scientists of China(No.52108120)the National Natural Science Foundation for Young Scientists of Jiangsu Province(No.BK20210258)。
文摘To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key construction technologies based on building information modelling(BIM),namely,parameterised modelling for the PFLCW layout design,drawing generation to draw the PFLCW layout and quantity statistics for extracting PFLCW quantities,are proposed.Then,a reinforced concrete(RC)frame infilled with PFLCW is considered the test model to verify the feasibility of the aforementioned technologies.The results show that PFLCW layout design can be accomplished rapidly and visually using parameterised modelling technology.The PFLCW layout diagram can be generated directly using drawing generation technology.The proposed quantity statistics technology enables the automatic export of PFLCW bills of quantities.The built parameterised model helps construction workers rapidly and intuitively understand the specific layout details of PFLCWs.Moreover,the generated layout drawing and the bills of quantities based on the parameterised model can guide the production and on-site installation of PFLCWs.The research conclusions can serve as a practical guide and technical support for PFLCW engineering applications.
基金Shanghai Municipal Science Committee key project(061612058,06JC14066,06DZ12001,061111006)Nationalscience and technology supporting project(2006BAF01A46)
文摘According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications of WfMC and the workflow process definition meta-model. The design for system structure is presented in detail, and the key technologies for system implementation are also introduced. Additionally, an example is illustrated to demonstrate the validity of system.
基金Supported by the National Natural Science Foundation of China(51205133) Natural Science Foundation of Shanghai(11ZR1409000) Ph.D.Programs Foundation of Ministry of Education of China(20110074120007)
文摘Based on frequency response and convex optimization,a novel optimal control system was developed for chemical processes.The feedforward control is designed to improve the tracking performance of closed loop chemical systems.The parametric model is not required because the system directly utilizes the frequency response of the loop transfer function,which can be measured accurately.In particular,the extremal values of magnitude and phase can be solved according to constrained quadratic programming optimizer and convex optimization.Simulation examples show the effectiveness of the method.The design method is simple and easily adopted in chemical industry.
文摘Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.
基金Supported by National Natural Science Foundation of China (No. 50975012)Research Fund for the Doctoral Program of Higher Education of China (No. 20091102110022)
文摘Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.
基金Supported by the National Natural Science Foundation of China(20776042) the National High Technology Research and Development Program of China(2007AA04Z164)+3 种基金 the Doctoral Fund of Ministry of Education of China(20090074110005) the Program for New Century Excellent Talents in University(NCET-09-0346) the"Shu Guang"Project(095G29) Shanghai Leading Academic Discipline Project(B504)
文摘Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.
文摘Building envelopes include facades and roof, which have the most interaction and exchange with outside and natural environment. In the future, meeting buildings various complicated needs with new technological advances necessitates a change and evolution in building envelopes. Controlling the energy consumption of the buildings is mostly through controlling the energy performance of the building envelopes. New technologies lead to the intelligent facades and envelopes. The envelope can be designed to be a part of the whole building's metabolism (energy production, storage and consumption) and morphology. The envelope would be a controlled part of the building which is managed through the central control system of the building, which connects it to other parts. It caused building envelope design to be changed fundamentally, so that there is a need to interact with engineering disciplines including computer engineering, mechanical engineering, material engineering and so on. All of these caused building envelope to get closer to biological and living systems. The physical restrictions which affect buildings system and living systems are the same. So they cause the same forces to shape the structure and form of the systems and the same rules to interact with the environment. The restrictions of material and energy resources caused living systems to be energy efficient and consuming less material. But the most important difference between living systems and building systems is in maximum use of different resources. As living systems use information maximally, the building system technology is based on using maximum energy. Now, there are many reasons and restrictions that building envelopes cannot act like living systems. But technological developments and contributing more disciplines in design and construction of building envelopes caused the future way of these envelopes get close to living systems for their energy efficiency. Some of living systems characteristics which the future building envelopes would have partially or benefit for the design process or construction are self-organization, evolution principles, hierarchical levels, processing energy, reaction to environmental stimuli and self-adjustment. Self-organization is achieved in some design software and in building material production for creating formal patterns. Evolution principles provide infrastructure for soft wares for optimization purposes and form creation. Hierarchical levels refer to giving hierarchical structure to the building envelopes through layering and designing different scales. Processing energy (metabolism) would be achieved through photovoltaic and solar collectors to produce energy and in passive systems for energy storage and distribution. Controlling solar radiation absorption and transmittance would help energy transfer from outside to building and vice versa. Reaction to environmental stimuli which is one of the most important characteristics of future building envelopes would use different types of active and passive sensors to create envelope mechanical reactions through material properties or collect data for processing in the control center to determine the right reaction. The reaction would be through different strategies such as changing properties and moving. Reaction could be passive or active. Self-adjustment can be achieved by control systems and processing units. All of these mean intelligent envelopes are essential parts of future buildings. Though it is now started with new design soft wares based on biological principles to optimize different parameters affecting the envelope function or to create the most efficient form.