为了提高花生化感物质降解菌对化感物质降解率以及连作障碍拮抗菌对植物病原菌的拮抗效果。利用优化培养后制备的复合菌剂进行大田试验(复合菌剂中降解菌有效活菌数总数达3×1010cfuml^(-1),拮抗菌有效活菌数1.12×108cfuml^(-1...为了提高花生化感物质降解菌对化感物质降解率以及连作障碍拮抗菌对植物病原菌的拮抗效果。利用优化培养后制备的复合菌剂进行大田试验(复合菌剂中降解菌有效活菌数总数达3×1010cfuml^(-1),拮抗菌有效活菌数1.12×108cfuml^(-1)),研究了复合菌剂对花生病害、降解特性及土壤微生物活性等的影响。结果表明:复合菌剂及菌剂加倍处理对化感物质的降解率分别达66.7%和89.4%;菌剂的施入对花生网斑病、焦斑病和褐斑病有明显的抑制作用,特别是菌剂加倍对网斑病抑制效果2年分别能达到56.1%和72.1%;花生生育期内,微生物生物量碳氮总体呈先增加后减少趋势,菌剂处理比空白分别能提高6.2%~34.5%和4.9%~31.1%;复合菌剂处理能明显提高土壤脲酶、酸性磷酸酶和过氧化氢酶活性;花生产量2年皆以菌剂加倍最高,分别为3734.2 kg hm^(-2)和3708.6 kg hm^(-2),复合菌剂在花生整个生育期稳定性良好。展开更多
Soil microbes are one of the most important determinants of allelopathic effects in the field. However, most studies testing the role of allelopathy in biological invasions did not consider the roles of soil microbes....Soil microbes are one of the most important determinants of allelopathic effects in the field. However, most studies testing the role of allelopathy in biological invasions did not consider the roles of soil microbes. Here we tested the hypothesis that soil microbes which can degrade allelochemicals may accumulate in soils over time by adaptation and therefore increase the degradation of allelochemicals and alleviate the allelopathic effects in biological invasions. As expected, soil microbes signifi- cantly decreased the allelopathic effects of leaf leachates of eight in the nine invasive plant species studied. In addition, Ageratina adenophora showed lower allelopathic effects in soil with long or intermediately invasion history than those in soil with short invasion history. The two main allelo- chemicals of the invader were degraded more rapidly with increasing invasion history in the soil. Correspondingly,biomass and activity of the soil microbes were higher in the soils with long invasion history than in that with short invasion history. Our results indicate that soil microbes may graduaUy adapt to the allelochemicals of Ageratina and alleviate its allelopathic effects and thus support the above hypothesis. It is necessary to consider the effects of soil microbes when testing the roles of allelopathy or the novel weapons hypothesis in biological invasions.展开更多
文摘为了提高花生化感物质降解菌对化感物质降解率以及连作障碍拮抗菌对植物病原菌的拮抗效果。利用优化培养后制备的复合菌剂进行大田试验(复合菌剂中降解菌有效活菌数总数达3×1010cfuml^(-1),拮抗菌有效活菌数1.12×108cfuml^(-1)),研究了复合菌剂对花生病害、降解特性及土壤微生物活性等的影响。结果表明:复合菌剂及菌剂加倍处理对化感物质的降解率分别达66.7%和89.4%;菌剂的施入对花生网斑病、焦斑病和褐斑病有明显的抑制作用,特别是菌剂加倍对网斑病抑制效果2年分别能达到56.1%和72.1%;花生生育期内,微生物生物量碳氮总体呈先增加后减少趋势,菌剂处理比空白分别能提高6.2%~34.5%和4.9%~31.1%;复合菌剂处理能明显提高土壤脲酶、酸性磷酸酶和过氧化氢酶活性;花生产量2年皆以菌剂加倍最高,分别为3734.2 kg hm^(-2)和3708.6 kg hm^(-2),复合菌剂在花生整个生育期稳定性良好。
基金We are grateful to Da-Wen Li and Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences for field assistance. This work was supported by the National Natural Science Foundation of China (31100410, 31470575 and 30830027), the National Key Technology R&D Program of China (2011BAD30B00), and Chinese Academy Science 135 Program (XTBG-T01, F01).
文摘Soil microbes are one of the most important determinants of allelopathic effects in the field. However, most studies testing the role of allelopathy in biological invasions did not consider the roles of soil microbes. Here we tested the hypothesis that soil microbes which can degrade allelochemicals may accumulate in soils over time by adaptation and therefore increase the degradation of allelochemicals and alleviate the allelopathic effects in biological invasions. As expected, soil microbes signifi- cantly decreased the allelopathic effects of leaf leachates of eight in the nine invasive plant species studied. In addition, Ageratina adenophora showed lower allelopathic effects in soil with long or intermediately invasion history than those in soil with short invasion history. The two main allelo- chemicals of the invader were degraded more rapidly with increasing invasion history in the soil. Correspondingly,biomass and activity of the soil microbes were higher in the soils with long invasion history than in that with short invasion history. Our results indicate that soil microbes may graduaUy adapt to the allelochemicals of Ageratina and alleviate its allelopathic effects and thus support the above hypothesis. It is necessary to consider the effects of soil microbes when testing the roles of allelopathy or the novel weapons hypothesis in biological invasions.