This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy...This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.展开更多
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of pre...It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of preforming combined finish forming process is developed. The preforming process is characterized by flaring combined upsetting for left fitting body which is like a flange, and is characterized by tube axial compressive process under die constraint for right fitting body which is like a double-wall pipe. The finite element simulations of the processes are carried out by software package DEFORM, and the results indicate that: 1) left or right fitting body can be formed by a two-step forming process without folding and under-filling defects; 2) by using two-step forming, strain and stress in left fitting body are larger than those in right fitting body, and deformation in right fitting body is more homogenous than the deformation in left fitting body; 3) two or more preforming steps may be needed for left fitting body considering the distributions of strain and stress.展开更多
This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents ...This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents (MSA) from their sources, and therefore the automatic synthesis of the multi-component system involved in the MENs can be achieved without choosing a 'key-component' either for the whole process or the mass exchangers. A mathematical model is proposed to carry out the optimization process. The concentrations, flow rates, matches and unit operation displayed in the obtained network constitute the exact representation of the mass exchange process in terms of all species in the system. An example is used to illustrate and demonstrate the application of the proposed method.展开更多
Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions(Panzhihua and Baima) in the Emeishan large igneous...Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions(Panzhihua and Baima) in the Emeishan large igneous province, SW China. This paper reports on the new mineral compositions of magnetite and ilmenite for selected cumulate rocks and clinopyroxene and plagioclase for basalts. We use these data to estimate the oxidation state of parental magmas and during ore formation to constrain the factors leading to the abundant accumulation of Fe–Ti oxides involved with the Hongge layered intrusion. The results show that the oxygen fugacities of parental magma are in the range of FMQ-1.56 to FMQ+0.14, and the oxygen fugacities during the ore formation of the Fe–Ti oxides located in the lower olivine clinopyroxenite zone(LOZ) and the middle clinopyroxenite zone(MCZ) of the Hongge intrusion are in the range of FMQ-1.29 to FMQ-0.2 and FMQ-0.49 to FMQ+0.82, respectively.The MELTS model demonstrates that, as the oxygen fugacity increases from the FMQ-1 to FMQ+1, the proportion of crystallization magnetite increases from 11 % to 16 % and the crystallization temperature of the Fe–Ti oxides advances from 1134 to 1164 °C. The moderate oxygen fugacities for the Hongge MCZ indicate that the oxygen fugacity was not the only factor affecting the crystallization of Fe–Ti oxides. We speculated that theinitial anhydrous magma that arrived at the Hongge shallow magma chamber became hydrous by attracting the H_2O of the strata. In combination with increasing oxygen fugacities from the LOZ(FMQ-1.29 to FMQ-0.2) to the MCZ(FMQ-0.49 to FMQ+0.82), these two factors probably account for the large-scale Fe–Ti oxide ore layers in the MCZ of the Hongge intrusion.展开更多
Lichens play an unparalleledly vital role in weathering and soil-forming processes in Antarctic region. Inthis study some related chemical components and micromorphological analyses have been carried out on thesamples...Lichens play an unparalleledly vital role in weathering and soil-forming processes in Antarctic region. Inthis study some related chemical components and micromorphological analyses have been carried out on thesamples of the weathered rocks and the lichens grown on them from Fildes Peninsula, Antarctic. The resultsindicated that the major chemical components in the bioweathering surface layer of the sampled rocks havebeen obviously altered and the weathering potential in this layer has greatly decreased by an average rangearound 4.66 percent in 4 samples. In the weathering surface layer ferruginmation of some minerals in varyingdegrees was seen by means of microscopic examination through the thin section of the weathered rocks, andits products proved to be dominated by hematite, limonite, goethite and free iron oxides Meanwhile, thestudy suggested that the dissolntion and absorption of lichens by their secretion accelerated the process ofcalcitization of minerals in the bicaweathering surface layer. Eventually, the results aIso show that differentspeciesof lichens play different roles in weathering and soilforming processes.展开更多
Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a nove...Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.展开更多
By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides ...By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.展开更多
Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot...Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.展开更多
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m...The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.展开更多
FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to ...FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to 50%(mole fraction). The effects of these compositional changes on the densification process and mechanical properties were studied. The results show that with the increase of TiC content, densities of the composites decrease due to insufficient particle rearrangement aided by (dissolutionreprecipitation) reaction during hot pressing. Closely related with their porosities and defect amount, the hardness and bend strength of the composites show peak values, attaining the highest values with TiC content being 70% and 60%, respectively. Increasing the aluminum content is beneficial to the densification process. But the hardness and bend strength of the composites are reduced to some extent due to the formation of excessive oxides and thermal vacancies.展开更多
The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experim...The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experimental results shows good quantitative agreement with Lifshitz-Slyozov-Wagner theory.The results show that the variation in shape factor and solid fraction is not significant,the average particle size increases with increasing holding time at the expense of the particle density.Ostwald repining is most likely the predominant growth mechanism in the AO-treated semi-solid slurry during rheocasting.The differences of coarsening occurred in rheocasting and partial re-melting process were also discussed.展开更多
An experiment was conducted to understand the growth inhibitory effects of aqueous extracts derived from Lantana camara L. (a globally recognized invasive alien weed) on six popular agricultural crops of Bangladesh....An experiment was conducted to understand the growth inhibitory effects of aqueous extracts derived from Lantana camara L. (a globally recognized invasive alien weed) on six popular agricultural crops of Bangladesh. The test was conducted in sterilized petridishes with a photoperiod of 24 hours and an average temperature of 29℃. The effect of different concentrations ofL. camara leaf extracts were recorded and compared with control (i.e., distil water). Result showed different concentrations of aqueous leaf extracts caused significant inhibitory effect on germination, root and shoot elongation and development of lateral roots of receptor crops. Bioassays also indicated that the inhibitory effect was proportional to the concentrations of the extracts and higher concentration had the stronger inhibitory effect whereas the lower concentration showed stimulatory effect in some cases. The inhibitory effect was much pronounced in root and lateral root development rather than shoot and germination.展开更多
Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propy...Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.展开更多
Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9...Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9%0 with changes in temperature, salinity, dissolved oxygen concentrations, and the composition of the dissolved inorganic nitrogen pool. In February, biological processes decreased because of low temperature, and the mean δ15NO3 near the river mouth was 2.4%0. In May, δ15NO3 was the highest in the surface waters among all seasons. Analysis on the conservative mixing revealed assimilation, and this finding is supported by positive relationship between Chl a and δ15NO3. The fractionation factor of assimilation was estimated to be 2.0‰ by the Rayleigh equation. Nitrification was supported based on the mixing behaviors in November 2010 and the low δ15NO3 values in May and November 2009. The high ammonium concentrations in the adjacent marine area and positive relationships between total organic nitrogen and δ15NO3 in November 2010 indicated that mineralization was taking place.展开更多
The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the histo...The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration.展开更多
Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO T...Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.展开更多
基金supported by the National Natural Science Foundation of China (51374004,51204083)the Candidate Talents Training Fund of Yun-nan Province (2012HB009,2014HB006)+2 种基金the Applied Basic Research Program of Yunnan Province (2014FB123)a School-Enterprise Cooperation Project from Jinchuan Corporation (Jinchuan 201115)the Talents Training Program of Kunming University of Science and Technology (KKZ3201352038)~~
文摘This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金Project(51305334)supported by the National Natural Science Foundation of ChinaProject(51335009)supported by the National Natural Science Foundation of China for Key Program+1 种基金Project(CXY1442(4))supported by the Science and Technology Planning Project of Xi’an,ChinaProject supported by Shaanxi Province Postdoctoral Science Research Program of China
文摘It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of preforming combined finish forming process is developed. The preforming process is characterized by flaring combined upsetting for left fitting body which is like a flange, and is characterized by tube axial compressive process under die constraint for right fitting body which is like a double-wall pipe. The finite element simulations of the processes are carried out by software package DEFORM, and the results indicate that: 1) left or right fitting body can be formed by a two-step forming process without folding and under-filling defects; 2) by using two-step forming, strain and stress in left fitting body are larger than those in right fitting body, and deformation in right fitting body is more homogenous than the deformation in left fitting body; 3) two or more preforming steps may be needed for left fitting body considering the distributions of strain and stress.
基金Supported by the National Natural Science Foundation of China (20976022)
文摘This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents (MSA) from their sources, and therefore the automatic synthesis of the multi-component system involved in the MENs can be achieved without choosing a 'key-component' either for the whole process or the mass exchangers. A mathematical model is proposed to carry out the optimization process. The concentrations, flow rates, matches and unit operation displayed in the obtained network constitute the exact representation of the mass exchange process in terms of all species in the system. An example is used to illustrate and demonstrate the application of the proposed method.
基金supported by the National 973 Program of China (2012CB416804 and 2014CB440906)CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-20)National Natural Sciences Foundations of China (41473051) to Tao yan
文摘Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions(Panzhihua and Baima) in the Emeishan large igneous province, SW China. This paper reports on the new mineral compositions of magnetite and ilmenite for selected cumulate rocks and clinopyroxene and plagioclase for basalts. We use these data to estimate the oxidation state of parental magmas and during ore formation to constrain the factors leading to the abundant accumulation of Fe–Ti oxides involved with the Hongge layered intrusion. The results show that the oxygen fugacities of parental magma are in the range of FMQ-1.56 to FMQ+0.14, and the oxygen fugacities during the ore formation of the Fe–Ti oxides located in the lower olivine clinopyroxenite zone(LOZ) and the middle clinopyroxenite zone(MCZ) of the Hongge intrusion are in the range of FMQ-1.29 to FMQ-0.2 and FMQ-0.49 to FMQ+0.82, respectively.The MELTS model demonstrates that, as the oxygen fugacity increases from the FMQ-1 to FMQ+1, the proportion of crystallization magnetite increases from 11 % to 16 % and the crystallization temperature of the Fe–Ti oxides advances from 1134 to 1164 °C. The moderate oxygen fugacities for the Hongge MCZ indicate that the oxygen fugacity was not the only factor affecting the crystallization of Fe–Ti oxides. We speculated that theinitial anhydrous magma that arrived at the Hongge shallow magma chamber became hydrous by attracting the H_2O of the strata. In combination with increasing oxygen fugacities from the LOZ(FMQ-1.29 to FMQ-0.2) to the MCZ(FMQ-0.49 to FMQ+0.82), these two factors probably account for the large-scale Fe–Ti oxide ore layers in the MCZ of the Hongge intrusion.
文摘Lichens play an unparalleledly vital role in weathering and soil-forming processes in Antarctic region. Inthis study some related chemical components and micromorphological analyses have been carried out on thesamples of the weathered rocks and the lichens grown on them from Fildes Peninsula, Antarctic. The resultsindicated that the major chemical components in the bioweathering surface layer of the sampled rocks havebeen obviously altered and the weathering potential in this layer has greatly decreased by an average rangearound 4.66 percent in 4 samples. In the weathering surface layer ferruginmation of some minerals in varyingdegrees was seen by means of microscopic examination through the thin section of the weathered rocks, andits products proved to be dominated by hematite, limonite, goethite and free iron oxides Meanwhile, thestudy suggested that the dissolntion and absorption of lichens by their secretion accelerated the process ofcalcitization of minerals in the bicaweathering surface layer. Eventually, the results aIso show that differentspeciesof lichens play different roles in weathering and soilforming processes.
基金Project (61203021) supported by the National Natural Science Foundation of ChinaProject (2011216011) supported by the Key Science and Technology Program of Liaoning Province,China+1 种基金Project (2013020024) supported by the Natural Science Foundation of Liaoning Province,ChinaProject (LJQ2015061) supported by the Program for Liaoning Excellent Talents in Universities,China
文摘Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.
文摘By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.
文摘Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.
基金Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), "Shu Guang" project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.
文摘FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to 50%(mole fraction). The effects of these compositional changes on the densification process and mechanical properties were studied. The results show that with the increase of TiC content, densities of the composites decrease due to insufficient particle rearrangement aided by (dissolutionreprecipitation) reaction during hot pressing. Closely related with their porosities and defect amount, the hardness and bend strength of the composites show peak values, attaining the highest values with TiC content being 70% and 60%, respectively. Increasing the aluminum content is beneficial to the densification process. But the hardness and bend strength of the composites are reduced to some extent due to the formation of excessive oxides and thermal vacancies.
基金Project (50804023) supported by the National Natural Science Foundation of ChinaProject (205084) supported by the Key Project of Science and Technology Research of Ministry of Education of China
文摘The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experimental results shows good quantitative agreement with Lifshitz-Slyozov-Wagner theory.The results show that the variation in shape factor and solid fraction is not significant,the average particle size increases with increasing holding time at the expense of the particle density.Ostwald repining is most likely the predominant growth mechanism in the AO-treated semi-solid slurry during rheocasting.The differences of coarsening occurred in rheocasting and partial re-melting process were also discussed.
文摘An experiment was conducted to understand the growth inhibitory effects of aqueous extracts derived from Lantana camara L. (a globally recognized invasive alien weed) on six popular agricultural crops of Bangladesh. The test was conducted in sterilized petridishes with a photoperiod of 24 hours and an average temperature of 29℃. The effect of different concentrations ofL. camara leaf extracts were recorded and compared with control (i.e., distil water). Result showed different concentrations of aqueous leaf extracts caused significant inhibitory effect on germination, root and shoot elongation and development of lateral roots of receptor crops. Bioassays also indicated that the inhibitory effect was proportional to the concentrations of the extracts and higher concentration had the stronger inhibitory effect whereas the lower concentration showed stimulatory effect in some cases. The inhibitory effect was much pronounced in root and lateral root development rather than shoot and germination.
基金Supported by the Ministry of Science and Technology of China Through the National Basic Research Program (2010CB226905)the National Natural Science Foundation of China for the Youth (20706059)
文摘Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.
基金Supported by the National Natural Science Foundation of China(No.41276116)the Fund for Creative Research Groups by NSFC(No.41121064)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9%0 with changes in temperature, salinity, dissolved oxygen concentrations, and the composition of the dissolved inorganic nitrogen pool. In February, biological processes decreased because of low temperature, and the mean δ15NO3 near the river mouth was 2.4%0. In May, δ15NO3 was the highest in the surface waters among all seasons. Analysis on the conservative mixing revealed assimilation, and this finding is supported by positive relationship between Chl a and δ15NO3. The fractionation factor of assimilation was estimated to be 2.0‰ by the Rayleigh equation. Nitrification was supported based on the mixing behaviors in November 2010 and the low δ15NO3 values in May and November 2009. The high ammonium concentrations in the adjacent marine area and positive relationships between total organic nitrogen and δ15NO3 in November 2010 indicated that mineralization was taking place.
基金Project(41372141) supported by the National Natural Science Foundation of ChinaProject(2008ZX05001–05–01) supported by Special and Significant Project of National Science and Technology,China
文摘The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration.
基金supported by the CAS West-Developing Initiative (Grant No. KZCX2-XB2-07)the Key Technologies R & D Program of China (Grant No. 2008BAD98B04)
文摘Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.