A plastic mixture construction technology using MBER (material becoming earth into rock) soil stabilizer is introduced and the water quality of a solidified soil cistern using the technology is analyzed. Rainwater w...A plastic mixture construction technology using MBER (material becoming earth into rock) soil stabilizer is introduced and the water quality of a solidified soil cistern using the technology is analyzed. Rainwater was harvested in July, 2012. Water quality of runoff and cistern water after storage was measured, including turbidity, chemical oxygen demand (COD), total nitrogen, nitrate, and ammonia. Results show that pollutant concentrations in runoff decreased with time, indicating that runoff in the early time should be removed. Nitrate concentrations in cistern water increased after storage, while the remaining parameters decreased. Measured pollutant concentrations did not exceed the limit according to the standard for drinking water in China. It can be concluded that the solidified soil cistern with plastic mixture construction technology can provide available water for domestic use.展开更多
This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological...This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological activated carbon integrated process. The results indicate that the effectiveness of the algal removal with mentioned integrated process is much higher and the apparatus can operate stably. When the turbidity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus (TP) and algae densities of the raw water are 29-38 NTU, 7.45-7.79 mg/L, 2.496-2.981 mag/L, 0.237-0.255 mg/L and 5.78-7.94×10^8 cells/L respectively, it can be reduced to 0.8-1.7 NTU, 1.69-2.84 rag/L, 0.579-0.692mg/L, 0.013-0.038 mg/L, 0.06-0.38×10^8 cells/L. The average removal rates of turbidity, CODMn, TN, TP and algae density can reach 96.4%, 71.5%, 76.8%, 92.0% and 96.9% respectively. The treated water can meet the requirements of class Ⅰ- Ⅱ in Environmental Quality Standard, for Surface Water.展开更多
A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimiz...A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.展开更多
Reverse osmosis (RO) is proved to be the most reliable, cost effective, and energy efficient in producing fresh water compared to other desalination technologies. It is the fastest-growing desalination technology wi...Reverse osmosis (RO) is proved to be the most reliable, cost effective, and energy efficient in producing fresh water compared to other desalination technologies. It is the fastest-growing desalination technology with a greater number of installations around the world. The economic and technical performance of a medium-capacity RO desalination plant (2,000 m^3/day) proposed to be installed in Umm Qasr city south of Basra, Iraq is analyzed using DEEP-3.2 software created by the International Atomic Energy Agency (IAEA). This port city is located on the Gulf shore and does not have any fresh water resources. The analysis shows that the cost of fresh water produced by this plant is US$0.986/m^3 with a good quality of fresh water (279 ppm), which is a reasonable price for this remote area. The analysis also shows an increase in water production cost of about 12% at increased electricity price from 0.06 to 0.1 US$/kWh, 53% when the seawater salinity increased from 35,000 to 45,000 ppm, 2.5% when the seawater temperature decreased from 33 ℃ to 20 ℃, and 0.71% when the interest rate increased from 0% to 5%. Pumping fresh water from the Basra purification plant (located 175 km north of Umm Qasr) is 22.16 times the cost and 236.7% poorer quality than the fresh water produced by the RO plant.展开更多
The micro-turbine is known as a producer of high-grade energy (work) and also low energy (heat). The following low grade heat energy have been modeled under ISO ambient conditions (international standard organiza...The micro-turbine is known as a producer of high-grade energy (work) and also low energy (heat). The following low grade heat energy have been modeled under ISO ambient conditions (international standard organization), i.e. 15 ℃ and 1 bar, to utilize the waste heat energy of a 200 kW micro-turbine combined with a single effect absorption chiller, an organic ranking cycle using R245fa (ORC-R245 fa) as a working fluid, a multi-effect distillation desalination (MED) and a thermal vapor compression MED Desalination unit (TVC-MED). The thermal comparison was carried out based on an energy and exergy analysis in terms of electric efficiency, exergetic efficiency, carbon footprint, and energy utilization factor (EUF). The software package IPSEpro has been used to model and simulate the proposed power plants. As a result, utilizing the exhaust waste heat energy in single-effect absorption chillier has contributed to stabilize ambient temperature fluctuation, and gain the best exergetic efficiency of 39%, while the EUF has reached 72% and the carbon footprint was reduced by 75% in MED and TVC-MED Desalination respectively. The results also reveal that TVC-MED is more efficient than traditional MED as its gain output ratio (GOR) is improved by 5.5%. In addition, ORC-245fa generates an additional 20% of the micro-turbine electricity generation.展开更多
The paper focuses on removing catalyst solids from oil slurry using 10 mm hydrocyclones, and aims to test the feasibility of the solution. An industrial sidetrack tester of residual oil separation by hydrocyclones was...The paper focuses on removing catalyst solids from oil slurry using 10 mm hydrocyclones, and aims to test the feasibility of the solution. An industrial sidetrack tester of residual oil separation by hydrocyclones was set up in 1.8 Mt/a resid fluid catalytic cracking (RFCC) unit, the effect of pressure drop, separation efficiency and inlet flowrate were studied. It was observed that an increase in feed flowrate will decrease the pressure drop ratio, and with an increase in feed flowrate, separation efficiency increases gradually. Under the condition that feed fiowrate was ranging from 250L/h to 270L/h, the separation efficiency was 45.77%-82.80%, the recovery rate of catalyst solid panicles was increased from 10 20% of electrostatic catalyst separator to 50 80%. Thus, it is feasible to separate the slurry by using the miniature hydrocyclones in RFCC unit.展开更多
Floating production storage and offloading (FPSO) units increasingly represent a practical and economic means for deep-water oil extraction and production. Systems thinking gives a unique opporamity to seek a balanc...Floating production storage and offloading (FPSO) units increasingly represent a practical and economic means for deep-water oil extraction and production. Systems thinking gives a unique opporamity to seek a balance between FPSO technical performance(s), with whole-cost; stakeholder decision-making is charged to align different fit-for-use design specification options' that address technical-motion(s), with respective life-cycle cost analyses (LCCA). Soft system methodology allows situation based analyses over set periods-of-time by diagnosing the problem-at-hand; namely, assessing the antecedents of life-cycle cost relative to FPSO sub- component design alternatives. Alternative mooring- component comparisons for either new-build hulls or refurbished hulls represent an initial necessary considera- tion to facilitate extraction, production and storage of deep- water oil reserves. Coupled dynamic analysis has been performed to generate FPSO motion in six degrees of freedom using SESAM DeepC, while life-cycle cost analysis (LCAA) studies give net-present-value comparsons reflective of market conditions. A parametric study has been conducted by varying wave heights from 4 - 8 m to understand FPSO motion behavior in the presence of wind and current, as well as comparing the motions of turreted versus spread mooring design alternatives. LCCA data has been generated to compare the cost of such different mooring options/hull conditions over 10 and 25- year periods. Systems thinking has been used to explain the interaction of problem variables; resultantly this paper is able to identify explicit factors affecting the choice of FPSO configurations in terms of motion and whole-cost, toward assisting significantly with the front-end engineering design (FEED) phase of fit-for-purpose configured FPSOs, in waters off Malaysia and Australia.展开更多
基金The National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAD31B05)the National Natural Science Foundation of China(No.41371276)+1 种基金the National Science and Technology Major Project of China(No.2009ZX07212-002-003-02)the Knowledge Innovation Project of theInstitute of Soil and Water Conservation,CAS&MWR(No.A315021304)
文摘A plastic mixture construction technology using MBER (material becoming earth into rock) soil stabilizer is introduced and the water quality of a solidified soil cistern using the technology is analyzed. Rainwater was harvested in July, 2012. Water quality of runoff and cistern water after storage was measured, including turbidity, chemical oxygen demand (COD), total nitrogen, nitrate, and ammonia. Results show that pollutant concentrations in runoff decreased with time, indicating that runoff in the early time should be removed. Nitrate concentrations in cistern water increased after storage, while the remaining parameters decreased. Measured pollutant concentrations did not exceed the limit according to the standard for drinking water in China. It can be concluded that the solidified soil cistern with plastic mixture construction technology can provide available water for domestic use.
文摘This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological activated carbon integrated process. The results indicate that the effectiveness of the algal removal with mentioned integrated process is much higher and the apparatus can operate stably. When the turbidity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus (TP) and algae densities of the raw water are 29-38 NTU, 7.45-7.79 mg/L, 2.496-2.981 mag/L, 0.237-0.255 mg/L and 5.78-7.94×10^8 cells/L respectively, it can be reduced to 0.8-1.7 NTU, 1.69-2.84 rag/L, 0.579-0.692mg/L, 0.013-0.038 mg/L, 0.06-0.38×10^8 cells/L. The average removal rates of turbidity, CODMn, TN, TP and algae density can reach 96.4%, 71.5%, 76.8%, 92.0% and 96.9% respectively. The treated water can meet the requirements of class Ⅰ- Ⅱ in Environmental Quality Standard, for Surface Water.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)
文摘A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.
文摘Reverse osmosis (RO) is proved to be the most reliable, cost effective, and energy efficient in producing fresh water compared to other desalination technologies. It is the fastest-growing desalination technology with a greater number of installations around the world. The economic and technical performance of a medium-capacity RO desalination plant (2,000 m^3/day) proposed to be installed in Umm Qasr city south of Basra, Iraq is analyzed using DEEP-3.2 software created by the International Atomic Energy Agency (IAEA). This port city is located on the Gulf shore and does not have any fresh water resources. The analysis shows that the cost of fresh water produced by this plant is US$0.986/m^3 with a good quality of fresh water (279 ppm), which is a reasonable price for this remote area. The analysis also shows an increase in water production cost of about 12% at increased electricity price from 0.06 to 0.1 US$/kWh, 53% when the seawater salinity increased from 35,000 to 45,000 ppm, 2.5% when the seawater temperature decreased from 33 ℃ to 20 ℃, and 0.71% when the interest rate increased from 0% to 5%. Pumping fresh water from the Basra purification plant (located 175 km north of Umm Qasr) is 22.16 times the cost and 236.7% poorer quality than the fresh water produced by the RO plant.
文摘The micro-turbine is known as a producer of high-grade energy (work) and also low energy (heat). The following low grade heat energy have been modeled under ISO ambient conditions (international standard organization), i.e. 15 ℃ and 1 bar, to utilize the waste heat energy of a 200 kW micro-turbine combined with a single effect absorption chiller, an organic ranking cycle using R245fa (ORC-R245 fa) as a working fluid, a multi-effect distillation desalination (MED) and a thermal vapor compression MED Desalination unit (TVC-MED). The thermal comparison was carried out based on an energy and exergy analysis in terms of electric efficiency, exergetic efficiency, carbon footprint, and energy utilization factor (EUF). The software package IPSEpro has been used to model and simulate the proposed power plants. As a result, utilizing the exhaust waste heat energy in single-effect absorption chillier has contributed to stabilize ambient temperature fluctuation, and gain the best exergetic efficiency of 39%, while the EUF has reached 72% and the carbon footprint was reduced by 75% in MED and TVC-MED Desalination respectively. The results also reveal that TVC-MED is more efficient than traditional MED as its gain output ratio (GOR) is improved by 5.5%. In addition, ORC-245fa generates an additional 20% of the micro-turbine electricity generation.
文摘The paper focuses on removing catalyst solids from oil slurry using 10 mm hydrocyclones, and aims to test the feasibility of the solution. An industrial sidetrack tester of residual oil separation by hydrocyclones was set up in 1.8 Mt/a resid fluid catalytic cracking (RFCC) unit, the effect of pressure drop, separation efficiency and inlet flowrate were studied. It was observed that an increase in feed flowrate will decrease the pressure drop ratio, and with an increase in feed flowrate, separation efficiency increases gradually. Under the condition that feed fiowrate was ranging from 250L/h to 270L/h, the separation efficiency was 45.77%-82.80%, the recovery rate of catalyst solid panicles was increased from 10 20% of electrostatic catalyst separator to 50 80%. Thus, it is feasible to separate the slurry by using the miniature hydrocyclones in RFCC unit.
文摘Floating production storage and offloading (FPSO) units increasingly represent a practical and economic means for deep-water oil extraction and production. Systems thinking gives a unique opporamity to seek a balance between FPSO technical performance(s), with whole-cost; stakeholder decision-making is charged to align different fit-for-use design specification options' that address technical-motion(s), with respective life-cycle cost analyses (LCCA). Soft system methodology allows situation based analyses over set periods-of-time by diagnosing the problem-at-hand; namely, assessing the antecedents of life-cycle cost relative to FPSO sub- component design alternatives. Alternative mooring- component comparisons for either new-build hulls or refurbished hulls represent an initial necessary considera- tion to facilitate extraction, production and storage of deep- water oil reserves. Coupled dynamic analysis has been performed to generate FPSO motion in six degrees of freedom using SESAM DeepC, while life-cycle cost analysis (LCAA) studies give net-present-value comparsons reflective of market conditions. A parametric study has been conducted by varying wave heights from 4 - 8 m to understand FPSO motion behavior in the presence of wind and current, as well as comparing the motions of turreted versus spread mooring design alternatives. LCCA data has been generated to compare the cost of such different mooring options/hull conditions over 10 and 25- year periods. Systems thinking has been used to explain the interaction of problem variables; resultantly this paper is able to identify explicit factors affecting the choice of FPSO configurations in terms of motion and whole-cost, toward assisting significantly with the front-end engineering design (FEED) phase of fit-for-purpose configured FPSOs, in waters off Malaysia and Australia.