The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of re...The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed.展开更多
[Objective] To study the germination characteristics and secondary metabolism of Scutellaria baicalensis Georgi seeds under different temperatures.[Method]The activities of superoxide dismutase(SOD)and peroxidase(...[Objective] To study the germination characteristics and secondary metabolism of Scutellaria baicalensis Georgi seeds under different temperatures.[Method]The activities of superoxide dismutase(SOD)and peroxidase(POD)were determined with lactoflavine-NBT method and guaiacol-colorimetry assay,respectively.The catalase(CAT),ascorbate peroxidase(APX),phenylalanine ammonia-lyase(PAL)and cinnamic acid 4-Hydroxylase(C4H)were determined with ultraviolet spectrophotometry.The secondary metabolites were detected by High Performance Liquid Chromatography(HPLC).[Result]The germination percentage,germination potentiality and germination index were seriously affected by low or high temperature.The proper germination temperature was 20-25 ℃.The activities of SOD,POD and CAT were significantly decreased as comparison to suitable temperature.The activities of PAL and C4H were also significantly decreased as comparision to suitable temperature which was accordance to the secondary metabolites.There was a positive correlation between the flavonoids content and the PAL and C4H activity(r=0.956,r=0.951,P0.05).[Conclusion]The quality of the skullcaps could be improved by improving the activity of PAL and C4H.The proper temperature for the seed germination and the formation of secondary metabolites was 20 ℃.展开更多
[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and gu...[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and guaiacol-colorimetry as- say, respectively. The activities of CAT, APX,PAL and C4H were determined with ultraviolet spectrophotometry. The contents of secondary metabolites were detected by High-performance Liquid Chromatography (HPLC). [Result] The results indicate that the soluble sugar content decreased during the first 5 days and then increased when the cotyledons formed. The contents of PAL, C4H and CHS continuously in- creased at different stages during the seed germination process. The secondary metabolites also showed the consistent variation trend. In addition, the contents of secondary metabolites had significant positive correlation with the key enzyme activi- ty. [Conclusion] The formation of secondary metabolites is significantly positively cor- related with the key enzyme during the seed germination process. Therefore, the key enzyme activity can be enhanced by adopting appropriate measures to improve the secondary metabolites, thereby obtaining high-quality medicinal materials.展开更多
[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, solub...[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately.展开更多
This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble su...This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.展开更多
AIM: To investigate the relationship between the superoxide dismutase (SOD), malondialdehyde (MDA) metabolic changes and the gastric carcinogenesis.METHODS: The SOD activity and MDA content were measured in the ...AIM: To investigate the relationship between the superoxide dismutase (SOD), malondialdehyde (MDA) metabolic changes and the gastric carcinogenesis.METHODS: The SOD activity and MDA content were measured in the gastric tissues from the focus center, peripheral and far-end areas of gastric carcinoma (n = 52) arid gastric ulcer (n = 10). All the tissues were subjected to routine histological examinations and classifications.RESULTS: The SOD activity was greatly reduced but the MDA content was markedly increased in the center areas of the non-mucous gastric carcinoma (non-MGC); and the poorly differentiated gastric carcinoma varied. The SOD activity was gradually decreased and the MDA content was gradually increased in the tissues from the focus far-end, peripheral to center areas of non-MGC. Both of the SOD activity and the MDA content were significantly declined and were respectively at same low level in the tissues from the focus center, peripheral, and far-end area with the mucous gastric carcinoma (MGC). In contrast to the gastric ulcer and grade I or II of non-MGC, the same level of the SOD activity and the MDA content were found in the focus center areas. Between non-MGC (groups A-D) and gastric ulcer (group F), the differences of SOD activity and MDA content were very noticeable in the gastric tissues from the focus peripheral and far-end areas, in which the SOD activity showed noticeable increase and the MDA content showed noticeable decreasein the gastric ulcer.CONCLUSION: The active free radical reaction in the gastric tissues can induce the carcinogenesis of non-MGC. The utmost low ability of antioxidation in the gastric tissues can induce the carcinogenesis of MGC. The metabolic change of the free radicals centralized mostly in the center of ulcerated lesions only, which suggested the ability of antioxidation was declined only in these lesions. However, the metabolism of free radicals varied significantly and the ability of antioxidation declined not only in the local focus area but also in the abroad gastric tissues with gastric carcinoma.展开更多
Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added comp...Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.展开更多
AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague...AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin 0-deethylase (EROD), pentoxyresorufin 0-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase Ⅱ enzymes, the rest of the enzymes tested represented phase Ⅰ enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase Ⅰ and Ⅱ enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system.展开更多
AIM: To examine the relationships between γ -glutamyltransferase (GGT), alanine-aminotransferase (ALT),aspartate-aminotransferase (AST) and various metabolic parameters, C-reactive protein (CRP) and an oxidative stre...AIM: To examine the relationships between γ -glutamyltransferase (GGT), alanine-aminotransferase (ALT),aspartate-aminotransferase (AST) and various metabolic parameters, C-reactive protein (CRP) and an oxidative stress marker (nitrotyrosine, NT) in subjects without any metabolic abnormalities from a population-based sample.METHODS: Two hundred and five subjects with normal body mass index (BMI), glucose tolerance, and without any metabolic abnormality were studied out of 1339subjects, without known liver diseases, alcohol abuse or use of hepatotoxic drugs, who are representative of the 45-64 aged population of Asti (north-western Italy).RESULTS: In all patients metabolic parameters and hs-CRP levels linearly increase from the lowest to the highest ALT and GGT tertiles, while in subjects without metabolic abnormalities, there is a significant association between fasting glucose, uric acid, waist circumference,hs-CRP, triglyceride values, and GGT levels. In these subjects, male sex, higher hs-CRP and glucose levels are associated with GGT levels in a multiple regression model, after adjustments for multiple confounders.In the same model, median NT levels are significantly associated with the increasing GGT tertile (β = 1.06;95%CI 0.67-1.45), but not with the AST and ALT tertiles.In a multiple regression model, after adjusting for age,sex, BMI, waist, smoking, and alcohol consumption, both NT (β = 0.05; 95%CI 0.02-0.08) and hs-CRP levels (β =0.09; 95%CI 0.03-0.15) are significantly associated with fasting glycemia.CONCLUSION: GGT, an easy, universally standardized and available measurement, could represent an early marker of sub-clinical inflammation and oxidative stress in otherwise healthy individuals. Prospective studies are needed to establish if GGT could predict future diabetes in these subjects.展开更多
The effects of rearing temperature on white muscle and hepatic phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT...The effects of rearing temperature on white muscle and hepatic phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were examined in fingerlings of blue tilapia, Oreochromis aureus. The experiment was conducted for 14 weeks at temperatures of 18, 22, 26, 30, and 34℃. The activity of the glycolytic enzymes PFK, PK, and LDH in white muscle increased significantly with increase in water temperature. A reverse trend was observed for these enzymes in the liver, except for LDH, which behaved in the same manner as in white muscle. Cytosolic AST and ALT activity increased in both white muscle and liver in response to warm thermal acclimatization, while a reduction in mitochondrial AST and ALT activity was noticed at high temperatures in comparison with those at a lower temperature.展开更多
The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the...The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the Bohai Sea; however, little attention has been paid to potential biological differences between these two pedigrees. In this study, we tested the sensitivity of both pedigrees to marine metal (cadmium and zinc) pollution biomonitoring and marine environmental toxicology. Results demonstrate significant biological differences in gills of white and zebra clams based on metabolic profiles and antioxidant enzyme activities. In addition, we found that hypotaurine, malonate and homarine were relatively high in white clam gills, while alanine, arginine, glutamate, succinate, 4-aminobutyrate, taurine and betaine were high in zebra clam gills. Zebra clam gills were also more sensitive to a mixture of Cd and Zn, as shown by antioxidant enzyme activities and metabolic profiles, but white clam gills could accumulate more Zn. Therefore, we suggest that the white pedigree can be used as a biomonitor to marine Zn pollution, whereas the zebra pedigree can be used for toxicology studies on Cd and Zn mixed pollution.展开更多
UDP-glucose pyrophosphorylase is an important enzyme concerned with carbohydrate metabolism in plants. Cloning of UGPase is a premise for further study on molecular level, and it is also crucial for study of carbohydr...UDP-glucose pyrophosphorylase is an important enzyme concerned with carbohydrate metabolism in plants. Cloning of UGPase is a premise for further study on molecular level, and it is also crucial for study of carbohydrate metabolism. UGPase cDNA sequence as a template, designed primer, then 3'-untranslate region (3' UTR) of UGPase were amplified by 3'-rapid amplification of cDNA ends (3'-RACE). The results suggested the 3' UTR were 243 bp, contained AATAA sequence and Poly(A).展开更多
UGPase (UDP-glucose pyrophosphorylase), one of the primary enzymes concerned with carbohydrate metabolism, catalyzes the formation of UDPG. By inserting the UGPase cDNA fragment cloned from Saccharum officinarum int...UGPase (UDP-glucose pyrophosphorylase), one of the primary enzymes concerned with carbohydrate metabolism, catalyzes the formation of UDPG. By inserting the UGPase cDNA fragment cloned from Saccharum officinarum into PQE-30, the prokaryotic expression vector of PQE-UGP was successfully constructed. Then the vector plasmid of PQE-UGP was transformed into host bacteria M 15 and the expression of target gene was induced by Isopropyl β-D-1-Thiogalactopyranoside (IPTG). The research laid foundation for study on the prokaryotic expression of UGPase.展开更多
Objective: To investigate the effects of lithium on cognitive function and metabolism of Amyloid-beta Protein Precursor (APP) and tau phosphorylation in rats chronically exposed to aluminum. Methods: Twenty-four chron...Objective: To investigate the effects of lithium on cognitive function and metabolism of Amyloid-beta Protein Precursor (APP) and tau phosphorylation in rats chronically exposed to aluminum. Methods: Twenty-four chronically aluminum-exposed rats were randomly divided into 2 groups: a lithium-treatment group and a non-treatment group (n=12 per group). Lithium chloride was administered to the lithium-treatment group via gastric gavage daily for 6 weeks (200 mg/kg·d LiCl), while the non-treatment group was administered the same volume of sodium chloride by the same means. An additional control group (n=12) received no intervention. Memory function was evaluated by the Morris water maze test. Aβ was measured by immunohistochemical staining, while total APP, phosphorylated-tau protein, CDK5 and PP2A were determined by Western Blotting. Results: (1) Compared to the non-treatment group, the lithium-treatment group had a significantly shorter mean escape latency and a lower proportion of random navigation pattern in the spatial probe test (P<0.05). After the platform was taken away, the rats in the lithium-treatment group crossed the platform quadrant significantly more and stayed longer in the platform quadrant than those in the non-treatment group (P<0.05). (2) The number of Aβ positive neurons in the hippocampus and cortex was significantly less in the lithium-treatment group than in the non-treatment group (P<0.05), but the content of APP was not different between groups (P=0.730). (3) Phosphorylation of tau protein decreased significantly in the lithium-treatment group than that in the non-treatment group (P<0.05). The content of CDK5 in the lithium-treatment group was significantly less than that in the non-treatment group in the cortex and hippocampus, while there was no difference in the content of PP2A between the 2 groups. The expression of CDK5 was significantly correlated with phosphorylated tau (r=0.871, P=0.024) in the lithium-treatment group. Conclusion: Lithium may improve memory function in rats chronically exposed to aluminum by decreasing both the production of Aβ and tau phosphorylation, with the latter results from inhibiting expression of CDK5.展开更多
Hepatic stellate cells(HSCs) are a kind of adipocytes. In HSCs lipids mainly exist in the form of lipid droplets. They are abundantly found in the cytoplasm and their main constituents are triglycerides. Lipid metabol...Hepatic stellate cells(HSCs) are a kind of adipocytes. In HSCs lipids mainly exist in the form of lipid droplets. They are abundantly found in the cytoplasm and their main constituents are triglycerides. Lipid metabolism in HSCs is closely related to its biological activity, however the mechanism of lipid droplets disappearance after HSC activation is not clearly established yet. Recent research shows that, cyclooxygenase-2 plays an important regulatory role in the lipid metabolism of HSCs. This paper seeks to review the subject based on studies that have been conducted so far to understand the role of cyclooxygenase-2 in the metabolism of lipids in HSCs.展开更多
Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabol...Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabolites. In present study, a homolog of ACC oxidase (ACO) gene was isolated from flowers of Dendrobium officinale Kimura et Migo by PCR-method. The obtained cDNA of DoACO is 970 bp long and contains an open reading frame (ORP) encoding a protein with 314 amino acid residues. The DoACO shows high identity to its homologues from other plant species, that has 94.8% closest amino acid sequence of related protein with the ACO from Dendrobium hybrid cultivar. The putative ORP of the obtained sequence could encode a proper protein in respect of molecular weight under T -Lac promoter in E. coli.展开更多
OBJECTIVE: To investigate the effect of Yiqihuoxue prescription(YQHX) from Traditional Chinese Medicine(TCM) on myocardial glucose and lipid metabolism after myocardial infarction via the cross talk between the liver ...OBJECTIVE: To investigate the effect of Yiqihuoxue prescription(YQHX) from Traditional Chinese Medicine(TCM) on myocardial glucose and lipid metabolism after myocardial infarction via the cross talk between the liver kinase B1(LKB1)-dependent Notch1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK). YQHX was prepared with substances with properties that benefit, to activate blood circulation based on the TCM theory.METHODS: Animal models of myocardial infarction were established by ligating Sprague Dawley rats' left anterior descending coronary arteries. The animals were randomly divided into a myocardial infarction(MI) group, a YQHX group, a perindopril group, a γ-secretase inhibitor, Notch signal inhibitor(DAPT) group, a DAPT+YQHX group and a sham group. The related drugs were administered on the second day after operation, and changes in the relevant indexes were examined on weeks 1 and 4.Changes in cardiac structure and function were examined by echocardiography. The glucose and free fatty acids(FFA) were examined by ELISA. The expression of Notch, LKB1 and AMPK m RNA was examined by a real-time fluorescence quantitative method. The expression of glucose transporter 4(GLUT4), and the expression of total acetyl-Co A carboxylase(ACC) and its phosphorylation were examined by western blotting.RESULTS: Compared with the sham group, the expression of Notch, LKB1 and AMPK m RNA in the MI group was lower. Compared with the MI group, the expression of these m RNAs in the YQHX and perindopril groups was higher, and their expression in the DAPT group was lower. At all time points, the protein expression of GLUT4 and p ACC decreased in the MI group. On week 1, the expression of p ACC protein was higher. In the DAPT group, the expression of p ACC protein decreased. Compared with the YQHX group, the expression of p ACC protein in the DAPT + YQHX group was lower. On week 4,compared with the MI group, the expression of GLUT4 protein in the YQHX group and the perindo-pril group was higher. The expression of GLUT4 protein in the DAPT group decreased. Compared with the YQHX group, the expression of GLUT4 protein in the DAPT+YQHX group was lower. There was no significant difference in the expression of ACC protein between the groups.CONCLUSION: YQHX promoted cross talk between the LKB1-dependent Notch1 and AMPK in myocardial tissue after myocardial infarction. Furthermore,it regulated the glucose and lipid metabolism of cardiomyocytes at different time points, thereby ameliorating the cardiac energy metabolism via different mechanisms and protecting the heart.展开更多
Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing thei...Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing their activity rate and altering their morphology, specifically tail depth and pigmentation. Furthermore, there is now evidence that tadpoles' defenses are modi- fied when predators combine with other stressful factors such as pollutants or competitors, but our knowledge on the physiologi- cal responses underlying these responses is still scarce. Here we study physiological responses in Pelobates cultripes tadpoles exposed to a natural predator (larvae of the aquatic beetle Dytiscus circumflexus), non-lethal concentrations of herbicide (gly- phosate, 0.5 mg/L and 1.0 mg/L) or both factors combined. We measured corticosterone levels, standard metabolic rate, oxidative damage (TBARS) and activity of antioxidant enzymes, and immune response (via leukocyte count). Tadpoles reduced their corti- costerone concentration by ca. 24% in the presence of predator cues, whereas corticosterone did not change in the presence of glyphosate. Two enzymes involved in antioxidant response also decreased in the presence of predators (14.7% and 13.2% respec- tively) but not to glyphosate. Herbicide, however, increased the number of neutrophils and reduced that of lymphocytes, and had an interaction effect with predator presence. Standard metabolic rate did not vary across treatments in our experiment. Thus we show a marked physiological response to the presence of predators but little evidence for interaction between predators and low levels of herbicide. Multiple assessment of the physiological state of animals is important to understand the basis and conse- quences ofphenotypic plasticity展开更多
Tropical mountain ecosystems are usually colonized by numerous invasive plant species and represent an ideal‘natural laboratory’to study the effects of altitude on plant invasion.The aim of this study was to investi...Tropical mountain ecosystems are usually colonized by numerous invasive plant species and represent an ideal‘natural laboratory’to study the effects of altitude on plant invasion.The aim of this study was to investigate the soil chemical and microbiological properties along an altitudinal gradient on a mountain colonized by the invader Ageratina adenophora.Rhizosphere soil of A.adenophora was collected over an altitudinal gradient(1400–2400 m)in Ailao Shan,China.We determined soil organic carbon(C),nutrient contents,enzyme activities,bacterial community composition as well as C and nitrogen(N)contents of the plant roots.Ecoenzymatic stoichiometric indices were calculated to estimate the relative C,N or P limitations of the microbial community.There was a significant effect of altitude on soil organic C in the rhizosphere,and a turning point in these measured variables was detected at an altitude of 2000 m.At low elevations,the rapid growth of invasive plants depleted the deficient phosphorus(P)in tropical soils,leading to microbial P limitation;at high elevations,microbes invested more energy to obtain C from resistant litter,leading to microbial C limitation.Bacterial beta diversity and soil pH contributed most to the altitudinal differences in ecoenzymatic stoichiometry,and Proteobacteria and Acidobacteria were the dominant bacterial phyla that determined the nutrient uptake status of microorganisms.These results demonstrate how microbial nutrient acquisition belowground of A.adenophora along an altitudinal gradient,which could contribute to further knowledge about the effects of altitude on biological invasion.展开更多
文摘The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed.
基金Supported by Technology Development Plan of Shandong Province(2008GG2NS02022)Agricultural Seed Project in Shandong Province(2009LZ01-03)National Key Basic Research Program(2007CB512601)~~
文摘[Objective] To study the germination characteristics and secondary metabolism of Scutellaria baicalensis Georgi seeds under different temperatures.[Method]The activities of superoxide dismutase(SOD)and peroxidase(POD)were determined with lactoflavine-NBT method and guaiacol-colorimetry assay,respectively.The catalase(CAT),ascorbate peroxidase(APX),phenylalanine ammonia-lyase(PAL)and cinnamic acid 4-Hydroxylase(C4H)were determined with ultraviolet spectrophotometry.The secondary metabolites were detected by High Performance Liquid Chromatography(HPLC).[Result]The germination percentage,germination potentiality and germination index were seriously affected by low or high temperature.The proper germination temperature was 20-25 ℃.The activities of SOD,POD and CAT were significantly decreased as comparison to suitable temperature.The activities of PAL and C4H were also significantly decreased as comparision to suitable temperature which was accordance to the secondary metabolites.There was a positive correlation between the flavonoids content and the PAL and C4H activity(r=0.956,r=0.951,P0.05).[Conclusion]The quality of the skullcaps could be improved by improving the activity of PAL and C4H.The proper temperature for the seed germination and the formation of secondary metabolites was 20 ℃.
基金Supported by Agricultural Improved Variety Project Program of Shandong Province(2005LZ08, 2008LZ013)~~
文摘[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and guaiacol-colorimetry as- say, respectively. The activities of CAT, APX,PAL and C4H were determined with ultraviolet spectrophotometry. The contents of secondary metabolites were detected by High-performance Liquid Chromatography (HPLC). [Result] The results indicate that the soluble sugar content decreased during the first 5 days and then increased when the cotyledons formed. The contents of PAL, C4H and CHS continuously in- creased at different stages during the seed germination process. The secondary metabolites also showed the consistent variation trend. In addition, the contents of secondary metabolites had significant positive correlation with the key enzyme activi- ty. [Conclusion] The formation of secondary metabolites is significantly positively cor- related with the key enzyme during the seed germination process. Therefore, the key enzyme activity can be enhanced by adopting appropriate measures to improve the secondary metabolites, thereby obtaining high-quality medicinal materials.
基金Supported by Agricultural Improved Variety Project of Shandong Province(No.2005LZ08,2008LZ013)~~
文摘[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately.
基金Supported by Agricultural Improved Variety Project of Shandong Province(2005LZ08,2008LZ013)~~
文摘This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.
基金Supported by the Youth Science Fund of Guangdong Province Medicine and Hygiene, No. B19960095
文摘AIM: To investigate the relationship between the superoxide dismutase (SOD), malondialdehyde (MDA) metabolic changes and the gastric carcinogenesis.METHODS: The SOD activity and MDA content were measured in the gastric tissues from the focus center, peripheral and far-end areas of gastric carcinoma (n = 52) arid gastric ulcer (n = 10). All the tissues were subjected to routine histological examinations and classifications.RESULTS: The SOD activity was greatly reduced but the MDA content was markedly increased in the center areas of the non-mucous gastric carcinoma (non-MGC); and the poorly differentiated gastric carcinoma varied. The SOD activity was gradually decreased and the MDA content was gradually increased in the tissues from the focus far-end, peripheral to center areas of non-MGC. Both of the SOD activity and the MDA content were significantly declined and were respectively at same low level in the tissues from the focus center, peripheral, and far-end area with the mucous gastric carcinoma (MGC). In contrast to the gastric ulcer and grade I or II of non-MGC, the same level of the SOD activity and the MDA content were found in the focus center areas. Between non-MGC (groups A-D) and gastric ulcer (group F), the differences of SOD activity and MDA content were very noticeable in the gastric tissues from the focus peripheral and far-end areas, in which the SOD activity showed noticeable increase and the MDA content showed noticeable decreasein the gastric ulcer.CONCLUSION: The active free radical reaction in the gastric tissues can induce the carcinogenesis of non-MGC. The utmost low ability of antioxidation in the gastric tissues can induce the carcinogenesis of MGC. The metabolic change of the free radicals centralized mostly in the center of ulcerated lesions only, which suggested the ability of antioxidation was declined only in these lesions. However, the metabolism of free radicals varied significantly and the ability of antioxidation declined not only in the local focus area but also in the abroad gastric tissues with gastric carcinoma.
文摘Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.
基金Supported by Grant From the National Science Council of Taiwan, No. NSC 90-2320-13-038-038
文摘AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin 0-deethylase (EROD), pentoxyresorufin 0-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase Ⅱ enzymes, the rest of the enzymes tested represented phase Ⅰ enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase Ⅰ and Ⅱ enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system.
基金Supported by a grant: "Progetto di Ricerca Sanitaria Finalizzata,Regione Piemonte, 2003"
文摘AIM: To examine the relationships between γ -glutamyltransferase (GGT), alanine-aminotransferase (ALT),aspartate-aminotransferase (AST) and various metabolic parameters, C-reactive protein (CRP) and an oxidative stress marker (nitrotyrosine, NT) in subjects without any metabolic abnormalities from a population-based sample.METHODS: Two hundred and five subjects with normal body mass index (BMI), glucose tolerance, and without any metabolic abnormality were studied out of 1339subjects, without known liver diseases, alcohol abuse or use of hepatotoxic drugs, who are representative of the 45-64 aged population of Asti (north-western Italy).RESULTS: In all patients metabolic parameters and hs-CRP levels linearly increase from the lowest to the highest ALT and GGT tertiles, while in subjects without metabolic abnormalities, there is a significant association between fasting glucose, uric acid, waist circumference,hs-CRP, triglyceride values, and GGT levels. In these subjects, male sex, higher hs-CRP and glucose levels are associated with GGT levels in a multiple regression model, after adjustments for multiple confounders.In the same model, median NT levels are significantly associated with the increasing GGT tertile (β = 1.06;95%CI 0.67-1.45), but not with the AST and ALT tertiles.In a multiple regression model, after adjusting for age,sex, BMI, waist, smoking, and alcohol consumption, both NT (β = 0.05; 95%CI 0.02-0.08) and hs-CRP levels (β =0.09; 95%CI 0.03-0.15) are significantly associated with fasting glycemia.CONCLUSION: GGT, an easy, universally standardized and available measurement, could represent an early marker of sub-clinical inflammation and oxidative stress in otherwise healthy individuals. Prospective studies are needed to establish if GGT could predict future diabetes in these subjects.
基金Supported by the Deanship of Scientific Research at King Saud University(Research Group Project No.RGP-VPP-304)
文摘The effects of rearing temperature on white muscle and hepatic phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were examined in fingerlings of blue tilapia, Oreochromis aureus. The experiment was conducted for 14 weeks at temperatures of 18, 22, 26, 30, and 34℃. The activity of the glycolytic enzymes PFK, PK, and LDH in white muscle increased significantly with increase in water temperature. A reverse trend was observed for these enzymes in the liver, except for LDH, which behaved in the same manner as in white muscle. Cytosolic AST and ALT activity increased in both white muscle and liver in response to warm thermal acclimatization, while a reduction in mitochondrial AST and ALT activity was noticed at high temperatures in comparison with those at a lower temperature.
基金Supported by the National Natural Science Foundation of China (No.41106102)Shandong Science Foundation of China (No. ZR2009CZ008)the 100 Talents Program of the Chinese Academy of Sciences
文摘The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the Bohai Sea; however, little attention has been paid to potential biological differences between these two pedigrees. In this study, we tested the sensitivity of both pedigrees to marine metal (cadmium and zinc) pollution biomonitoring and marine environmental toxicology. Results demonstrate significant biological differences in gills of white and zebra clams based on metabolic profiles and antioxidant enzyme activities. In addition, we found that hypotaurine, malonate and homarine were relatively high in white clam gills, while alanine, arginine, glutamate, succinate, 4-aminobutyrate, taurine and betaine were high in zebra clam gills. Zebra clam gills were also more sensitive to a mixture of Cd and Zn, as shown by antioxidant enzyme activities and metabolic profiles, but white clam gills could accumulate more Zn. Therefore, we suggest that the white pedigree can be used as a biomonitor to marine Zn pollution, whereas the zebra pedigree can be used for toxicology studies on Cd and Zn mixed pollution.
文摘UDP-glucose pyrophosphorylase is an important enzyme concerned with carbohydrate metabolism in plants. Cloning of UGPase is a premise for further study on molecular level, and it is also crucial for study of carbohydrate metabolism. UGPase cDNA sequence as a template, designed primer, then 3'-untranslate region (3' UTR) of UGPase were amplified by 3'-rapid amplification of cDNA ends (3'-RACE). The results suggested the 3' UTR were 243 bp, contained AATAA sequence and Poly(A).
文摘UGPase (UDP-glucose pyrophosphorylase), one of the primary enzymes concerned with carbohydrate metabolism, catalyzes the formation of UDPG. By inserting the UGPase cDNA fragment cloned from Saccharum officinarum into PQE-30, the prokaryotic expression vector of PQE-UGP was successfully constructed. Then the vector plasmid of PQE-UGP was transformed into host bacteria M 15 and the expression of target gene was induced by Isopropyl β-D-1-Thiogalactopyranoside (IPTG). The research laid foundation for study on the prokaryotic expression of UGPase.
文摘Objective: To investigate the effects of lithium on cognitive function and metabolism of Amyloid-beta Protein Precursor (APP) and tau phosphorylation in rats chronically exposed to aluminum. Methods: Twenty-four chronically aluminum-exposed rats were randomly divided into 2 groups: a lithium-treatment group and a non-treatment group (n=12 per group). Lithium chloride was administered to the lithium-treatment group via gastric gavage daily for 6 weeks (200 mg/kg·d LiCl), while the non-treatment group was administered the same volume of sodium chloride by the same means. An additional control group (n=12) received no intervention. Memory function was evaluated by the Morris water maze test. Aβ was measured by immunohistochemical staining, while total APP, phosphorylated-tau protein, CDK5 and PP2A were determined by Western Blotting. Results: (1) Compared to the non-treatment group, the lithium-treatment group had a significantly shorter mean escape latency and a lower proportion of random navigation pattern in the spatial probe test (P<0.05). After the platform was taken away, the rats in the lithium-treatment group crossed the platform quadrant significantly more and stayed longer in the platform quadrant than those in the non-treatment group (P<0.05). (2) The number of Aβ positive neurons in the hippocampus and cortex was significantly less in the lithium-treatment group than in the non-treatment group (P<0.05), but the content of APP was not different between groups (P=0.730). (3) Phosphorylation of tau protein decreased significantly in the lithium-treatment group than that in the non-treatment group (P<0.05). The content of CDK5 in the lithium-treatment group was significantly less than that in the non-treatment group in the cortex and hippocampus, while there was no difference in the content of PP2A between the 2 groups. The expression of CDK5 was significantly correlated with phosphorylated tau (r=0.871, P=0.024) in the lithium-treatment group. Conclusion: Lithium may improve memory function in rats chronically exposed to aluminum by decreasing both the production of Aβ and tau phosphorylation, with the latter results from inhibiting expression of CDK5.
基金Supported by the National Natural Science Foundation of China(81373465)
文摘Hepatic stellate cells(HSCs) are a kind of adipocytes. In HSCs lipids mainly exist in the form of lipid droplets. They are abundantly found in the cytoplasm and their main constituents are triglycerides. Lipid metabolism in HSCs is closely related to its biological activity, however the mechanism of lipid droplets disappearance after HSC activation is not clearly established yet. Recent research shows that, cyclooxygenase-2 plays an important regulatory role in the lipid metabolism of HSCs. This paper seeks to review the subject based on studies that have been conducted so far to understand the role of cyclooxygenase-2 in the metabolism of lipids in HSCs.
文摘Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabolites. In present study, a homolog of ACC oxidase (ACO) gene was isolated from flowers of Dendrobium officinale Kimura et Migo by PCR-method. The obtained cDNA of DoACO is 970 bp long and contains an open reading frame (ORP) encoding a protein with 314 amino acid residues. The DoACO shows high identity to its homologues from other plant species, that has 94.8% closest amino acid sequence of related protein with the ACO from Dendrobium hybrid cultivar. The putative ORP of the obtained sequence could encode a proper protein in respect of molecular weight under T -Lac promoter in E. coli.
基金Supported by the National Natural Science Foundation of China:Study of Influence of Supplementing Qi and Activating Blood Circulation Herbs on Microvascular Dysfunction and Related Regulators of Myocardial Infarction Rats(No.81173142)Study of Influence of Supplementing Qi and Activating Blood Circulation Herbs on Mitochondrial Energy Metabolism and Signal Transduction of Myocardial Ischemia Rats(No.81473552)The Basic Research Program(graduate program)of Beijing university of Chinese Medicine:Study of Influence of Supplementing Qi and Activating Blood Circulation Herbs on Notch Signal Network of Myocardial Infarction Rats(No.2016-JYB-XS034)
文摘OBJECTIVE: To investigate the effect of Yiqihuoxue prescription(YQHX) from Traditional Chinese Medicine(TCM) on myocardial glucose and lipid metabolism after myocardial infarction via the cross talk between the liver kinase B1(LKB1)-dependent Notch1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK). YQHX was prepared with substances with properties that benefit, to activate blood circulation based on the TCM theory.METHODS: Animal models of myocardial infarction were established by ligating Sprague Dawley rats' left anterior descending coronary arteries. The animals were randomly divided into a myocardial infarction(MI) group, a YQHX group, a perindopril group, a γ-secretase inhibitor, Notch signal inhibitor(DAPT) group, a DAPT+YQHX group and a sham group. The related drugs were administered on the second day after operation, and changes in the relevant indexes were examined on weeks 1 and 4.Changes in cardiac structure and function were examined by echocardiography. The glucose and free fatty acids(FFA) were examined by ELISA. The expression of Notch, LKB1 and AMPK m RNA was examined by a real-time fluorescence quantitative method. The expression of glucose transporter 4(GLUT4), and the expression of total acetyl-Co A carboxylase(ACC) and its phosphorylation were examined by western blotting.RESULTS: Compared with the sham group, the expression of Notch, LKB1 and AMPK m RNA in the MI group was lower. Compared with the MI group, the expression of these m RNAs in the YQHX and perindopril groups was higher, and their expression in the DAPT group was lower. At all time points, the protein expression of GLUT4 and p ACC decreased in the MI group. On week 1, the expression of p ACC protein was higher. In the DAPT group, the expression of p ACC protein decreased. Compared with the YQHX group, the expression of p ACC protein in the DAPT + YQHX group was lower. On week 4,compared with the MI group, the expression of GLUT4 protein in the YQHX group and the perindo-pril group was higher. The expression of GLUT4 protein in the DAPT group decreased. Compared with the YQHX group, the expression of GLUT4 protein in the DAPT+YQHX group was lower. There was no significant difference in the expression of ACC protein between the groups.CONCLUSION: YQHX promoted cross talk between the LKB1-dependent Notch1 and AMPK in myocardial tissue after myocardial infarction. Furthermore,it regulated the glucose and lipid metabolism of cardiomyocytes at different time points, thereby ameliorating the cardiac energy metabolism via different mechanisms and protecting the heart.
文摘Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing their activity rate and altering their morphology, specifically tail depth and pigmentation. Furthermore, there is now evidence that tadpoles' defenses are modi- fied when predators combine with other stressful factors such as pollutants or competitors, but our knowledge on the physiologi- cal responses underlying these responses is still scarce. Here we study physiological responses in Pelobates cultripes tadpoles exposed to a natural predator (larvae of the aquatic beetle Dytiscus circumflexus), non-lethal concentrations of herbicide (gly- phosate, 0.5 mg/L and 1.0 mg/L) or both factors combined. We measured corticosterone levels, standard metabolic rate, oxidative damage (TBARS) and activity of antioxidant enzymes, and immune response (via leukocyte count). Tadpoles reduced their corti- costerone concentration by ca. 24% in the presence of predator cues, whereas corticosterone did not change in the presence of glyphosate. Two enzymes involved in antioxidant response also decreased in the presence of predators (14.7% and 13.2% respec- tively) but not to glyphosate. Herbicide, however, increased the number of neutrophils and reduced that of lymphocytes, and had an interaction effect with predator presence. Standard metabolic rate did not vary across treatments in our experiment. Thus we show a marked physiological response to the presence of predators but little evidence for interaction between predators and low levels of herbicide. Multiple assessment of the physiological state of animals is important to understand the basis and conse- quences ofphenotypic plasticity
基金supported by Yunnan Fundamental Research Projects(202101AU070150)the National Natural Science Foundation of China(31870524,32071663,32071661).
文摘Tropical mountain ecosystems are usually colonized by numerous invasive plant species and represent an ideal‘natural laboratory’to study the effects of altitude on plant invasion.The aim of this study was to investigate the soil chemical and microbiological properties along an altitudinal gradient on a mountain colonized by the invader Ageratina adenophora.Rhizosphere soil of A.adenophora was collected over an altitudinal gradient(1400–2400 m)in Ailao Shan,China.We determined soil organic carbon(C),nutrient contents,enzyme activities,bacterial community composition as well as C and nitrogen(N)contents of the plant roots.Ecoenzymatic stoichiometric indices were calculated to estimate the relative C,N or P limitations of the microbial community.There was a significant effect of altitude on soil organic C in the rhizosphere,and a turning point in these measured variables was detected at an altitude of 2000 m.At low elevations,the rapid growth of invasive plants depleted the deficient phosphorus(P)in tropical soils,leading to microbial P limitation;at high elevations,microbes invested more energy to obtain C from resistant litter,leading to microbial C limitation.Bacterial beta diversity and soil pH contributed most to the altitudinal differences in ecoenzymatic stoichiometry,and Proteobacteria and Acidobacteria were the dominant bacterial phyla that determined the nutrient uptake status of microorganisms.These results demonstrate how microbial nutrient acquisition belowground of A.adenophora along an altitudinal gradient,which could contribute to further knowledge about the effects of altitude on biological invasion.