The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM...The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.展开更多
Recent studies have found a connection between Indian Ocean Basin Warming and the anomalous Northwest Pacific Anticy- clone (ANPWA) during El Nifio decaying year. This study focuses on the necessary condition for th...Recent studies have found a connection between Indian Ocean Basin Warming and the anomalous Northwest Pacific Anticy- clone (ANPWA) during El Nifio decaying year. This study focuses on the necessary condition for this connection by using ob- servation and numerical simulation. The seasonal transition of the Indian Ocean sea surface wind is critical to the climatic ef- fect of Indian Ocean Basin Warming. When the South Asian Summer Monsoon reaches its peak, the background wind be- comes desirable for basin warming, which then affects the climate in the Northwest Pacific. Via the Kelvin waves and Ekman divergence, the wind anomalies exist in the lower atmosphere east of the Indian Ocean warm Sea Surface Temperature (SST) anomalies, and intensify and sustain the ANWPA throughout the E1 Nifio decaying summer. This impact plays an important role in the inter-annual variability of the East Asian Summer Monsoon.展开更多
Using observational data, the East Asian-North Indian Ocean index (]EANI), which reflects a tropospheric thermal contrast, is found to correlate well with the East Asian summer monsoon (EASM) and associated rainfa...Using observational data, the East Asian-North Indian Ocean index (]EANI), which reflects a tropospheric thermal contrast, is found to correlate well with the East Asian summer monsoon (EASM) and associated rainfall over eastern China. Corresponding to a higher (lower) IEANI, the EASM at mid-latitudes is stronger (weaker), and there is more (less) rainfall in North China and less (more) rainfall near the Yangtze River valley. To investigate long-term variation in the EASM, we reconstructed the BC 665AD 1985 IEANI based on reconstructed temperatures in Beijing and Tasmania, Australia. Over the past 2000 years, the reconstructed/EANI generally represents centennial-scale variations in the EASM and rainfall over eastem China. The correlation pattern between the reconstructed IEANI and rainfall over eastern China is similar to modem observations, implying that the correlation feature at centennial scales also occurred over the past 2000 years. With respect to longer-scale (several hundreds to one thousand years) IEANI variations and their correlations with rainfall, further verifications should be performed using various paleoclimatic proxy data.展开更多
基金supported by the National Natural Science Foundation of China grant number 41776031the National Key Research and Development Program of China grant number 2018YFC1506903+2 种基金the Guangdong Natural Science Foundation grant number 2015A030313796the program for scientific research start-up funds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China。
文摘The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.
基金supported by the National Key Program for Developing Basic Science(Grant Nos.2010CB428504&2012CB956002)National Natural Science Foundation of China(Grant Nos.40906005,41105059,41275069,GYHY201106017&GYHY201206038)the National Key Technologies R&D Program of China(Grant No.2009BAC51B01)
文摘Recent studies have found a connection between Indian Ocean Basin Warming and the anomalous Northwest Pacific Anticy- clone (ANPWA) during El Nifio decaying year. This study focuses on the necessary condition for this connection by using ob- servation and numerical simulation. The seasonal transition of the Indian Ocean sea surface wind is critical to the climatic ef- fect of Indian Ocean Basin Warming. When the South Asian Summer Monsoon reaches its peak, the background wind be- comes desirable for basin warming, which then affects the climate in the Northwest Pacific. Via the Kelvin waves and Ekman divergence, the wind anomalies exist in the lower atmosphere east of the Indian Ocean warm Sea Surface Temperature (SST) anomalies, and intensify and sustain the ANWPA throughout the E1 Nifio decaying summer. This impact plays an important role in the inter-annual variability of the East Asian Summer Monsoon.
基金sponsored by National Natural Science Foundation of China (Grant Nos. 40890053 and 40890052)National Basic Research Program of China (Grant No. 2007CB815901)
文摘Using observational data, the East Asian-North Indian Ocean index (]EANI), which reflects a tropospheric thermal contrast, is found to correlate well with the East Asian summer monsoon (EASM) and associated rainfall over eastern China. Corresponding to a higher (lower) IEANI, the EASM at mid-latitudes is stronger (weaker), and there is more (less) rainfall in North China and less (more) rainfall near the Yangtze River valley. To investigate long-term variation in the EASM, we reconstructed the BC 665AD 1985 IEANI based on reconstructed temperatures in Beijing and Tasmania, Australia. Over the past 2000 years, the reconstructed/EANI generally represents centennial-scale variations in the EASM and rainfall over eastem China. The correlation pattern between the reconstructed IEANI and rainfall over eastern China is similar to modem observations, implying that the correlation feature at centennial scales also occurred over the past 2000 years. With respect to longer-scale (several hundreds to one thousand years) IEANI variations and their correlations with rainfall, further verifications should be performed using various paleoclimatic proxy data.