The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decada...The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countercurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC relate to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Nio-Southern Oscillation (ENSO) suggests that before El Nio (La Nia) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Nio (La Nia) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.展开更多
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satel...The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.展开更多
North-south displacements and meridional vacillations of the eddy-driven jet are widely accepted as the dominant cause of variability of the observational zonal-mean zonal wind anomalies(denoted [u]').In this stud...North-south displacements and meridional vacillations of the eddy-driven jet are widely accepted as the dominant cause of variability of the observational zonal-mean zonal wind anomalies(denoted [u]').In this study,a new idea regarding the primary variability of the observational [u]' in the middle latitude troposphere is presented.It is hypothesized that there are two different classes of primary variability of the observational [u]':the poleward propagation of the [u]'(abbreviated as PP) and meridional vacillations.To validate this hypothesis,one-point correlation maps of [u]' at 200-hPa during the boreal cold season(November-April) of every year from 1957-2002 are used as a criterion.Twelve PP years,in which the PP events are dominant in the variability of [u]',and 15 no_PP years,in which the PP events are recessive and the meridional vacillations are dominant in the variability of [u]',are examined.The results show that the variabilities of [u]' are different in the chosen PP and no_PP years.In the PP years,the PP events dominate the variability of [u]';however,the meridional vacillations are prevalent in the no_PP years.展开更多
The provenance of the lower Es2 in the Shanghe area was determined from an approach incorporating analysis, elemental ratios,paleocurrent direction,the typomorphic characteristics of detritus and the distribution of c...The provenance of the lower Es2 in the Shanghe area was determined from an approach incorporating analysis, elemental ratios,paleocurrent direction,the typomorphic characteristics of detritus and the distribution of conglomerate and gritstone in the peripheral basin.Typical elemental ratios characteristic of the sedimentary area were compared with those from the source areas as abstracted from sediments of the Huimin sag using cluster analysis.The results show that the distribution pattern focuses on Mg/Mn,Fe/K,Al/Na,Ba/Mn and Al/Mg.Mg/Mn is the highest ratio,from 25 to 45.This is similar to the pattern from the Precambrian.Furthermore,paleocurrent direction was used to determine provenance by examining the distribution of gritstone and the seismic progradational reflections.The research results indicate that the provenance is to the northwest in the Precambrian strata where the sand grain size is rough.To the east there is siltstone,fine sandstone and mudstone.This is significant for the exploration of oil and gas within the study area.展开更多
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.40176003 and 40136010)Anna Zaklikowski was supported by the funding of the U.S.National Science Foundation
文摘The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countercurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC relate to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Nio-Southern Oscillation (ENSO) suggests that before El Nio (La Nia) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Nio (La Nia) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.
基金Supported by the National Natural Science Foundation of China(No.41276001)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11010201)+2 种基金the Global Change and Air-Sea Interaction Program(No.GASI-03-01-01-05)the National Basic Research Program of China(973 Program)(No.2012CB417401)the Scientific and Technological Development Plan Project of Shandong Province(No.2013GRC31503)
文摘The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.
基金sponsored by the National Key Technologies R&D Program of China (Grant No. 2009BAC51B02)the National Basic Research Program of China (973 Program,Grant No. 2010CB950401)+1 种基金the National Nature Science Foundation of China (Grant Nos. U0833602 and 40805023)the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Free Exploration Fund
文摘North-south displacements and meridional vacillations of the eddy-driven jet are widely accepted as the dominant cause of variability of the observational zonal-mean zonal wind anomalies(denoted [u]').In this study,a new idea regarding the primary variability of the observational [u]' in the middle latitude troposphere is presented.It is hypothesized that there are two different classes of primary variability of the observational [u]':the poleward propagation of the [u]'(abbreviated as PP) and meridional vacillations.To validate this hypothesis,one-point correlation maps of [u]' at 200-hPa during the boreal cold season(November-April) of every year from 1957-2002 are used as a criterion.Twelve PP years,in which the PP events are dominant in the variability of [u]',and 15 no_PP years,in which the PP events are recessive and the meridional vacillations are dominant in the variability of [u]',are examined.The results show that the variabilities of [u]' are different in the chosen PP and no_PP years.In the PP years,the PP events dominate the variability of [u]';however,the meridional vacillations are prevalent in the no_PP years.
基金supported by the National Natural Science Foundation of China(No.40972043)
文摘The provenance of the lower Es2 in the Shanghe area was determined from an approach incorporating analysis, elemental ratios,paleocurrent direction,the typomorphic characteristics of detritus and the distribution of conglomerate and gritstone in the peripheral basin.Typical elemental ratios characteristic of the sedimentary area were compared with those from the source areas as abstracted from sediments of the Huimin sag using cluster analysis.The results show that the distribution pattern focuses on Mg/Mn,Fe/K,Al/Na,Ba/Mn and Al/Mg.Mg/Mn is the highest ratio,from 25 to 45.This is similar to the pattern from the Precambrian.Furthermore,paleocurrent direction was used to determine provenance by examining the distribution of gritstone and the seismic progradational reflections.The research results indicate that the provenance is to the northwest in the Precambrian strata where the sand grain size is rough.To the east there is siltstone,fine sandstone and mudstone.This is significant for the exploration of oil and gas within the study area.