The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as we...The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as well as the Ocean General Circulation Model (OGCM). We investigated the correspondence between the SPG and the AMOC in a coupled climate model. Our results confirm that the SPG can be used as an early indicator for the AMOC in the subtropical North Atlantic. Changes in the SPG are closely related to variations in the air-sea heat exchange in the Labrador Sea, and variations in deep water formation and southward dense water transport with the deep western boundary current (DWBC) in the North Atlantic.展开更多
The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat e...The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.展开更多
基金supported by Yongqi Gao's 100-Talent Program financed by the Chinese Academy of Sciences (CAS)the CAS Project "IAP OGCM Improvement and Coupling to AGCM and Ocean Carbon Cycle" (KZCX2-YW-218)the EU Project Dragoness (SSA5-CT-2006-030902)
文摘The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as well as the Ocean General Circulation Model (OGCM). We investigated the correspondence between the SPG and the AMOC in a coupled climate model. Our results confirm that the SPG can be used as an early indicator for the AMOC in the subtropical North Atlantic. Changes in the SPG are closely related to variations in the air-sea heat exchange in the Labrador Sea, and variations in deep water formation and southward dense water transport with the deep western boundary current (DWBC) in the North Atlantic.
基金supported by National Basic Research Program of China(Grant No.2012CB957802)the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(Grant No.CHINARE2012-04-04)+1 种基金Program of International Science and Technology Cooperation(Grant No.S2011GR0348)National Natural Science Foundation of China(Grant No.41176029)
文摘The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.