期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于北斗的多源同步时钟的安全性设计与实现 被引量:3
1
作者 章立宗 张道农 刘永新 《电力与能源》 2015年第1期38-41,共4页
针对基于全球卫星导航定位系统(GPS)的电力系统单源单主时钟同步模式进行风险分析,在北斗二代卫星同步系统技术基础上,结合当前电力时间同步系统建设的要求,重新设计以北斗卫星对时为主、双主钟冗余的多源同步时钟。研究了基于复杂可编... 针对基于全球卫星导航定位系统(GPS)的电力系统单源单主时钟同步模式进行风险分析,在北斗二代卫星同步系统技术基础上,结合当前电力时间同步系统建设的要求,重新设计以北斗卫星对时为主、双主钟冗余的多源同步时钟。研究了基于复杂可编程逻辑器件(CPLD)的高效可靠的多源判决机制和高稳晶振应用技术,可以解决多源失步时的时间安全性问题。改进同步时钟的防护设计,能确保在电磁干扰环境下时间信号输出的正确性和稳定性。 展开更多
关键词 北斗时间同步系统 双机冗余 多源判决 时间同步 高稳晶振
下载PDF
BEACON SYNCHRONIZATION TECHNOLOGY FOR “BEIDOU” TERRESTRIAL IMPROVEMENT SYSTEM 被引量:2
2
作者 WEIJin-chen TANGJi-qiang SHENFeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第2期177-182,共6页
Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the b... Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the beacon synchronization of the improvement system with the “Beidou” one-way time transfer model is realized.The direct digital synthesis (DDS) is adopted to generate the pseudo-random code clock having high precision and stability. Meanwhile, the CPLD device is used to design the synchronization pulse picking-up module, the spread spectrum PN code generator and the spread spectrum modulator. Measurement results indicate that the beacon synchronization has the high precision and the stability. 展开更多
关键词 radio navigation system terrestrial improvement system time transfer SYNCHRONIZATION
下载PDF
COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy 被引量:9
3
作者 WANG ZhengBo ZHAO Lu +3 位作者 WANG ShiGuang ZHANG JianWei WANG Bo WANG LiJun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第9期1788-1804,共17页
In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements... In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements several geo-stationary satellites(GEO),time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites.Serving as space-borne relay stations,the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous(IGSO)and mid-earth orbit(MEO)satellites within the system.It is shown that,because of the accuracy in clock synchronization,the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS.In addition,the COMPASS system can function with its entire positioning,navigation,and time-dissemination services even without the ground link,thus making it much more robust and secure.We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy,to reach 100 ps in time dissemination and 3 cm in positioning accuracy,respectively.In this paper,we also analyze two feasible synchronization plans.All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given.We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications. 展开更多
关键词 GNSS time and frequency Global Navigation Satellite System GNSS time synchronization time dissemination atomic clock phase locked loop RELATIVITY Geo-stationary satellites reference system
原文传递
Satellite-station time synchronization information based real-time orbit error monitoring and correction of navigation satellite in Beidou System 被引量:4
4
作者 HE Feng ZHOU ShanShi +5 位作者 HU XiaoGong ZHOU JianHua LIU Li GUO Rui LI XiaoJie WU Shan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第7期1395-1403,共9页
Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchron... Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error. 展开更多
关键词 satellite navigation orbital mechanics time synchronization ephemeris fitting
原文传递
Time synchronization in communication networks based on the Beidou foundation enhancement system 被引量:7
5
作者 LIU Hui ZHANG RuFei +1 位作者 LIU JingNan ZHANG Ming 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期9-15,共7页
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co... Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system. 展开更多
关键词 Beidou satellite navigation system precision timing time synchronization Beidou foundation enhancement system communication network time synchronization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部