By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenar...By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenarios from 2012 to 2100, respectively. The results indicate that the growth of winter wheat would be strongly influenced by climate change in future. The average flowering and maturity dates of winter wheat would advance by 26 and 27 days under scenario A2, and by 23 and 24 days respectively under scenario A1B from 2012 to 2100. The simulated potential productivity of winter wheat shows a decrease of 14.3% and 12.5% for scenarios A2 and A1B respectively without the fertilization effect of CO2, while an increase of 1.3% and 0.6% with the fertilization effect of CO2. Additionally, for northern China, the simulated potential productivity would markedly decrease under both scenarios, independent with the fertilization effect of CO2, which indicates that the current planted winter wheat would be more vulnerable than that in southern China. The most likely reason is the current winter wheat varieties in northern China are winter varieties or strong winter varieties, which need some days of low temperature for dormancy. While in southern China, the winter wheat is spring or half winter varieties and can grow slowly during winter, thus, they would be affected slightly when winter temperature increases. The results of this study may have important implications for adaptation measures.展开更多
Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Sever...Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Several relationships, namely, E/ET0 and soil surface moisture, E/ET0 and leaf area index (LAI), are also analyzed. The average seasonal ETc values for winter wheat, maize (2008) and maize (2009) are 431.21,456.3 and 341.4mm. The value of E/ET0 varied from 1 at initial growth stage to 0.295 at the later growth for winter wheat, and from 1 to 0.492, from 1 to 0.566 for maize (2008) and maize (2009). The relationship between E/ET0 and surface soil water content, and E/ET0 and LAI are fitted to a quadratic parabola equation with significant correlation coefficients, respectively, for wheat and maize. These results should help the precise planning and efficient management of irrigation for these crops in this region.展开更多
基金supported by the impact of agrometeorology disasters on agriculture under climate change in China(No.GYHY201106021)National Basic Research Program of China(No.2012CB955301)
文摘By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenarios from 2012 to 2100, respectively. The results indicate that the growth of winter wheat would be strongly influenced by climate change in future. The average flowering and maturity dates of winter wheat would advance by 26 and 27 days under scenario A2, and by 23 and 24 days respectively under scenario A1B from 2012 to 2100. The simulated potential productivity of winter wheat shows a decrease of 14.3% and 12.5% for scenarios A2 and A1B respectively without the fertilization effect of CO2, while an increase of 1.3% and 0.6% with the fertilization effect of CO2. Additionally, for northern China, the simulated potential productivity would markedly decrease under both scenarios, independent with the fertilization effect of CO2, which indicates that the current planted winter wheat would be more vulnerable than that in southern China. The most likely reason is the current winter wheat varieties in northern China are winter varieties or strong winter varieties, which need some days of low temperature for dormancy. While in southern China, the winter wheat is spring or half winter varieties and can grow slowly during winter, thus, they would be affected slightly when winter temperature increases. The results of this study may have important implications for adaptation measures.
文摘Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Several relationships, namely, E/ET0 and soil surface moisture, E/ET0 and leaf area index (LAI), are also analyzed. The average seasonal ETc values for winter wheat, maize (2008) and maize (2009) are 431.21,456.3 and 341.4mm. The value of E/ET0 varied from 1 at initial growth stage to 0.295 at the later growth for winter wheat, and from 1 to 0.492, from 1 to 0.566 for maize (2008) and maize (2009). The relationship between E/ET0 and surface soil water content, and E/ET0 and LAI are fitted to a quadratic parabola equation with significant correlation coefficients, respectively, for wheat and maize. These results should help the precise planning and efficient management of irrigation for these crops in this region.