Characterization of aerosols is required to reduce uncertainties in satellite retrievals of global aerosols and for modeling the effects of these aerosols on climate.Aerosols in the North China Plain(NCP) are complex,...Characterization of aerosols is required to reduce uncertainties in satellite retrievals of global aerosols and for modeling the effects of these aerosols on climate.Aerosols in the North China Plain(NCP) are complex,which provides a good opportunity to study key aerosol optical properties for various aerosol types.A cluster analysis of key optical properties obtained from Aerosol Robotic Network(AERONET) data in Beijing and Xianghe during 2001-11 was performed to identify dominant aerosol types and their associated optical properties.Five dominant aerosol types were identified.The results show that the urban/industrial aerosol of moderate absorption was dominant in the region and that this type varied little with season.Urban/industrial aerosol of weak absorption was the next most common type and mainly occurs in summer,followed by that strong aerosols occurring mainly in winter.All were predominantly fine mode particles.Mineral dust(MD) and polluted dust(PD) occurred mainly in spring,followed by winter,and their absorption decreased with wavelength.In addition,aerosol dynamics and optical parameters such as refractive index and asymmetry factor were examined.Results show that the size of coarse mode particles decreased with AOD indicating the domination of external mixing between aerosols.展开更多
The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of nor...The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.展开更多
基金supported by the National Basic Research Program of China (2013CB955801)the National Natural Science Foundation of China (41175031)the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA05100300)
文摘Characterization of aerosols is required to reduce uncertainties in satellite retrievals of global aerosols and for modeling the effects of these aerosols on climate.Aerosols in the North China Plain(NCP) are complex,which provides a good opportunity to study key aerosol optical properties for various aerosol types.A cluster analysis of key optical properties obtained from Aerosol Robotic Network(AERONET) data in Beijing and Xianghe during 2001-11 was performed to identify dominant aerosol types and their associated optical properties.Five dominant aerosol types were identified.The results show that the urban/industrial aerosol of moderate absorption was dominant in the region and that this type varied little with season.Urban/industrial aerosol of weak absorption was the next most common type and mainly occurs in summer,followed by that strong aerosols occurring mainly in winter.All were predominantly fine mode particles.Mineral dust(MD) and polluted dust(PD) occurred mainly in spring,followed by winter,and their absorption decreased with wavelength.In addition,aerosol dynamics and optical parameters such as refractive index and asymmetry factor were examined.Results show that the size of coarse mode particles decreased with AOD indicating the domination of external mixing between aerosols.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05120202)the National Natural Science Foundation of China(Grant Nos.41071132,41371215)+1 种基金Science and Technology Department of Hebei Province(Grant No.13277611D)the Foundation of Key Discipline of Hebei Province and Hebei Key Laboratory of Environmental Change and Ecological Construction
文摘The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.