期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
20世纪90年代以来北极海冰减少的热动力分析——基于PIOMAS模式结果 被引量:7
1
作者 周璐 徐世明 曾刚 《大气科学》 CSCD 北大核心 2017年第1期57-70,共14页
本文利用美国华盛顿大学的PIOMAS海冰模式输出结果,分析了20世纪90年代以来北极海冰减少的动力和热力过程的特征,并探讨了海冰减少与北极大气环流模态之间的关系。结果表明:(1)通过弗拉姆海峡输出的多年冰的厚度自1995年以来有显著减少;... 本文利用美国华盛顿大学的PIOMAS海冰模式输出结果,分析了20世纪90年代以来北极海冰减少的动力和热力过程的特征,并探讨了海冰减少与北极大气环流模态之间的关系。结果表明:(1)通过弗拉姆海峡输出的多年冰的厚度自1995年以来有显著减少;(2)海冰的热力过程在20世纪90年代以后特别是21世纪以来是海冰减少的主导因素;(3)大气模态中的北极涛动(AO)和北极偶极子(AD)均对北极海冰的动力输出有影响,各自与海冰输出量的相关关系显著,并且AO和AD的多元线性回归能很好的拟合出海冰输出量的减少。 展开更多
关键词 北极海冰减少 热力和动力分析 PIOMAS(Pan-Arctic Ice OCEAN Modeling and ASSIMILATION System)模式 可能机理
下载PDF
The extreme Arctic warm anomaly in November 2020
2
作者 Qiyao Fan Xinping Xu +1 位作者 Shengping He Botao Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第5期55-60,共6页
In November 2020,the eastern Arctic experienced an extensive extreme warm anomaly(i.e.,the second strongest case since 1979),which was followed by extreme cold conditions over East Asia in early winter.The observed Ar... In November 2020,the eastern Arctic experienced an extensive extreme warm anomaly(i.e.,the second strongest case since 1979),which was followed by extreme cold conditions over East Asia in early winter.The observed Arctic warm anomaly in November 2020 was able to extend upwards to the upper troposphere,characterized as a deep Arctic warm anomaly.In autumn 2020,substantial Arctic sea-ice loss that exceeded the record held since1979,accompanied by increased upward turbulent heat flux,was able to strongly warm the Arctic.Furthermore,there was abundant northward moisture transport into the Arctic from the North Atlantic,which was the strongest in the past four decades.This extreme moisture intrusion was able to enhance the downward longwave radiation and strongly contribute to the warm conditions in the Arctic.Further analysis indicated that the remote moisture intrusion into the Arctic was promoted by the large-scale atmospheric circulation patterns,such as the wave train propagating from the midlatitude North Atlantic to the Arctic.This process may have been linked to the warmer sea surface temperature in the midlatitude North Atlantic. 展开更多
关键词 Arctic warm anomaly Arctic sea-ice loss Poleward moisture transport Rossby wave train
下载PDF
Possible contribution of Arctic sea ice decline to intense warming over Siberia in June
3
作者 Ying Zhang Mengqi Zhang +2 位作者 Jiehua Ma Dong Chen Tao Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第2期59-64,共6页
Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,th... Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,this paper shows that there was an intense warming trend over Siberia(60°–75°N,70°–130°E)in June during 1979–2020.The linear trend of the June surface air temperature is 0.90℃/10 yr over Siberia,which is much larger than the area with the same latitudes(60°–75°N,0°–360°,trend of 0.46℃/10 yr).The warming over Siberia extends from the surface to about 300 h Pa.Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming,which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation.The Siberian warming is closely related to Arctic sea-ice decline,especially the sea ice over northern Barents Sea and Kara Sea.Numerical experiments carried out using and atmospheric general circulation model(IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes. 展开更多
关键词 Intense Siberian warming Arctic sea ice decline Surface radiation flux Turbulent heat flux
下载PDF
Variability of Antarctic sea ice extent over the past 200 years 被引量:2
4
作者 Jiao Yang Cunde Xiao +2 位作者 Jiping Liu Shutong Lia Dahe Qin 《Science Bulletin》 SCIE EI CSCD 2021年第23期2394-2404,共11页
While Arctic sea ice has been decreasing in recent decades that is largely due to anthropogenic forcing,the extent of Antarctic sea ice showed a positive trend during 1979–2015, followed by an abrupt decrease. The sh... While Arctic sea ice has been decreasing in recent decades that is largely due to anthropogenic forcing,the extent of Antarctic sea ice showed a positive trend during 1979–2015, followed by an abrupt decrease. The shortness of the satellite record limits our ability to quantify the possible contribution of anthropogenic forcing and internal variability to the observed Antarctic sea ice variability. In this study,ice core and fast ice records with annual resolution from six sites are used to reconstruct the annualresolved northernmost latitude of sea ice edge(NLSIE) for different sectors of the Southern Ocean, including the Weddell Sea(WS), Bellingshausen Sea(BS), Amundsen Sea(AS), Ross Sea(RS), and the Indian and western Pacific Ocean(Ind WPac). The linear trends of the NLSIE are analyzed for each sector for the past100–200 years and found to be à0.08°, à0.17°, +0.07°, +0.02°, and à0.03° per decade(!95% confidence level) for the WS, BS, AS, RS, and Ind WPac, respectively. For the entire Antarctic, our composite NLSIE shows a decreasing trend(à0.03° per decade, 99% confidence level) during the 20 th century, with a rapid decline in the mid-1950 s. It was not until the early 1980 s that the observed increasing trend occurred. A comparison with major climate indices shows that the long-term linear trends in all five sectors are largely dominated by the changes in the Southern Annular Mode(SAM). The multi-decadal variability in WS,BS, and AS is dominated by the Interdecadal Pacific Oscillation, whereas that in the Ind WPac and RS is dominated by the SAM. 展开更多
关键词 ANTARCTIC Sea ice Ice core Southern Annular Mode Interdecadal Pacific Oscillation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部